scholarly journals Environmental fluctuations in the Olenus Zone (Upper Cambrian), southern Scandinavia: A geochemical approach

2000 ◽  
Vol 47 ◽  
pp. 53-61
Author(s):  
Niels H. Schovsbo

The Scandinavian Alum Shale Formation (Middle Cambrian to Lower Ordovician) was deposited under generally low bottom water oxygen levels. In the formation there is a covariance between faunal composition and the level of trace element enrichment caused by their mutual dependence upon changes in the bottom water oxygen levels. A detailed profile of the V/(V+Ni) ratio through the Upper Cambrian Olenus Zone in the Gislövshammar-2 core, Scania, Sweden, is described. Environmental information from this zone is particularly relevant since the Olenus species in the zone apparently undergo iterative changes in morphology that may be linked to environmental changes. Moreover, the occurrences of Olenus species and Homagnostus obesus are almost mutually exclusive. The results indicate that the trilobitic intervals coincide with increases in oxygen levels as monitored by the V/(V+Ni) ratio. Peak oxygen levels do not appear at the base of each interval, suggesting that colonisation of the sea-floor took place when the oxygenation level reached a certain threshold but before maximum oxygen levels were reached. The distribution patterns of Olenus and Homagnostus are interpreted as reflecting differences in substrate preference since samples containing Homagnostus have statistically significantly higher TOC levels. The V/(V+Ni) variations in the Olenus bearing intervals suggest that oxygen levels fluctuated more than would be expected from morphological changes apparent in the Olenusspecies.

2009 ◽  
Vol 6 (7) ◽  
pp. 1273-1293 ◽  
Author(s):  
J. J. Middelburg ◽  
L. A. Levin

Abstract. The intensity, duration and frequency of coastal hypoxia (oxygen concentration <63 μM) are increasing due to human alteration of coastal ecosystems and changes in oceanographic conditions due to global warming. Here we provide a concise review of the consequences of coastal hypoxia for sediment biogeochemistry. Changes in bottom-water oxygen levels have consequences for early diagenetic pathways (more anaerobic at expense of aerobic pathways), the efficiency of re-oxidation of reduced metabolites and the nature, direction and magnitude of sediment-water exchange fluxes. Hypoxia may also lead to more organic matter accumulation and burial and the organic matter eventually buried is also of higher quality, i.e. less degraded. Bottom-water oxygen levels also affect the organisms involved in organic matter processing with the contribution of metazoans decreasing as oxygen levels drop. Hypoxia has a significant effect on benthic animals with the consequences that ecosystem functions related to macrofauna such as bio-irrigation and bioturbation are significantly affected by hypoxia as well. Since many microbes and microbial-mediated biogeochemical processes depend on animal-induced transport processes (e.g. re-oxidation of particulate reduced sulphur and denitrification), there are indirect hypoxia effects on biogeochemistry via the benthos. Severe long-lasting hypoxia and anoxia may result in the accumulation of reduced compounds in sediments and elimination of macrobenthic communities with the consequences that biogeochemical properties during trajectories of decreasing and increasing oxygen may be different (hysteresis) with consequences for coastal ecosystem dynamics.


2009 ◽  
Vol 6 (2) ◽  
pp. 3655-3706 ◽  
Author(s):  
J. J. Middelburg ◽  
L. A. Levin

Abstract. The intensity, duration and frequency of coastal hypoxia (oxygen concentration <63 μM) are increasing due to human alteration of coastal ecosystems and changes in oceanographic conditions due to global warming. Here we provide a concise review of the consequences of coastal hypoxia for sediment biogeochemistry. Changes in bottom-water oxygen levels have consequences for early diagenetic pathways (more anaerobic at expense of aerobic pathways), the efficiency of re-oxidation of reduced metabolites and the nature, direction and magnitude of sediment-water exchange fluxes. Hypoxia may also lead to more organic matter accumulation and burial and the organic matter eventually buried is also of higher quality, i.e. less degraded. Bottom-water oxygen levels also affect the organisms involved in organic matter processing with the contribution of metazoans decreasing as oxygen levels drop. Hypoxia has a significant effect on benthic animals with the consequences that ecosystem functions related to macrofauna such as bio-irrigation and bioturbation are significantly affected by hypoxia as well. Since many microbes and microbial-mediated biogeochemical processes depend on animal induced transport processes (e.g. re-oxidation of particulate reduced sulphur and denitrification), there are indirect hypoxia effects on biogeochemistry via the benthos. Severe long-lasting hypoxia and anoxia may result in the accumulation of reduced compounds in sediments and elimination of macrobenthic communities with the consequences that biogeochemical properties during trajectories of decreasing and increasing oxygen may be different (hysteresis) with consequences for coastal ecosystem dynamics.


2015 ◽  
Vol 12 (4) ◽  
pp. 1169-1189 ◽  
Author(s):  
J. Schönfeld ◽  
W. Kuhnt ◽  
Z. Erdem ◽  
S. Flögel ◽  
N. Glock ◽  
...  

Abstract. Present day oceans are well ventilated, with the exception of mid-depth oxygen minimum zones (OMZs) under high surface water productivity, regions of sluggish circulation, and restricted marginal basins. In the Mesozoic, however, entire oceanic basins transiently became dysoxic or anoxic. The Cretaceous ocean anoxic events (OAEs) were characterised by laminated organic-carbon rich shales and low-oxygen indicating trace fossils preserved in the sedimentary record. Yet assessments of the intensity and extent of Cretaceous near-bottom water oxygenation have been hampered by deep or long-term diagenesis and the evolution of marine biota serving as oxygen indicators in today's ocean. Sedimentary features similar to those found in Cretaceous strata were observed in deposits underlying Recent OMZs, where bottom-water oxygen levels, the flux of organic matter, and benthic life have been studied thoroughly. Their implications for constraining past bottom-water oxygenation are addressed in this review. We compared OMZ sediments from the Peruvian upwelling with deposits of the late Cenomanian OAE 2 from the north-west African shelf. Holocene laminated sediments are encountered at bottom-water oxygen levels of < 7 μmol kg−1 under the Peruvian upwelling and < 5 μmol kg−1 in California Borderland basins and the Pakistan Margin. Seasonal to decadal changes of sediment input are necessary to create laminae of different composition. However, bottom currents may shape similar textures that are difficult to discern from primary seasonal laminae. The millimetre-sized trace fossil Chondrites was commonly found in Cretaceous strata and Recent oxygen-depleted environments where its diameter increased with oxygen levels from 5 to 45 μmol kg−1. Chondrites has not been reported in Peruvian sediments but centimetre-sized crab burrows appeared around 10 μmol kg−1, which may indicate a minimum oxygen value for bioturbated Cretaceous strata. Organic carbon accumulation rates ranged from 0.7 and 2.8 g C cm−2 kyr−1 in laminated OAE 2 sections in Tarfaya Basin, Morocco, matching late Holocene accumulation rates of laminated Peruvian sediments under Recent oxygen levels below 5 μmol kg−1. Sediments deposited at > 10 μmol kg−1 showed an inverse exponential relationship of bottom-water oxygen levels and organic carbon accumulation depicting enhanced bioirrigation and decomposition of organic matter with increased oxygen supply. In the absence of seasonal laminations and under conditions of low burial diagenesis, this relationship may facilitate quantitative estimates of palaeo-oxygenation. Similarities and differences between Cretaceous OAEs and late Quaternary OMZs have to be further explored to improve our understanding of sedimentary systems under hypoxic conditions.


2014 ◽  
Vol 11 (9) ◽  
pp. 13343-13387 ◽  
Author(s):  
J. Schönfeld ◽  
W. Kuhnt ◽  
Z. Erdem ◽  
S. Flögel ◽  
N. Glock ◽  
...  

Abstract. Present day oceans are generally well ventilated except mid-depth oxygen minimum zones (OMZs) under high surface water productivity regimes, regions of sluggish circulation, and restricted marginal basins. In the Mesozoic, however, entire oceanic basins transiently became dysoxic or even anoxic. In particular the Cretaceous Ocean Anoxic Events (OAEs) were characterised by laminated organic-carbon rich shales and low-oxygen indicating trace fossil assemblages preserved in the sedimentary record. Yet both, qualitative and quantitative assessments of intensity and extent of Cretaceous near-bottom water oxygenation have been hampered by deep or long-term diagenesis and the evolution of marine biota serving as oxygen indicators in today's ocean. Sedimentary features similar to those found in Cretaceous strata were observed in deposits underlying Recent OMZs, where bottom-water oxygen levels, the flux of organic matter, and benthic life are well known. Their implications for constraining past bottom-water oxygenation are addressed in this review, with emphasis on comparing OMZ sediments from the Peruvian upwelling with deposits of the late Cenomanian OAE 2 from the Atlantic NW African shelf. Holocene laminated sediments were encountered at bottom-water oxygen levels of <7 μmol kg−1 under the Peruvian upwelling and <5 μmol kg−1 in California Borderland basins and the Pakistan Margin. Changes of sediment input on seasonal to decadal time scales are necessary to create laminae of different composition. However, bottom currents may shape similar textures that are difficult to discern from primary seasonal laminae in sediment cores. The millimetre-sized trace fossil Chondrites was commonly found in Cretaceous strata and Recent oxygen-depleted environments where its diameter increased with oxygen levels from 5 to 45 μmol kg−1. This ichnogenus has not been reported from Peruvian sediments but cm-sized crab burrows appeared around 10 μmol kg−1, which may indicate a minimum oxygen value for bioturbated Cretaceous strata. Organic carbon accumulation rates ranged from 0.7 and 2.8 g C cm−2 kyr−1 in laminated sections of OAE 2 in the Tarfaya Basin, Morocco, matching late Holocene accumulation rates of the majority of laminated Peruvian sediment cores under Recent oxygen levels below 5 μmol kg−1. Sediments deposited at >10 μmol kg−1 showed an inverse exponential relationship of bottom-water oxygen levels and organic carbon accumulation depicting enhanced bioirrigation and decomposition of organic matter with increased oxygen supply. In absence of seasonal laminations and under conditions of low burial diagenesis, this relationship may facilitate quantitative estimates of paleo-oxygenation under suboxic conditions. Similarities and differences between Cretaceous OAEs and late Quaternary OMZs have to be further explored to improve our understanding of sedimentary systems under hypoxic conditions.


Insects ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 152 ◽  
Author(s):  
Da-Yeong Lee ◽  
Dae-Seong Lee ◽  
Mi-Jung Bae ◽  
Soon-Jin Hwang ◽  
Seong-Yu Noh ◽  
...  

Odonata species are sensitive to environmental changes, particularly those caused by humans, and provide valuable ecosystem services as intermediate predators in food webs. We aimed: (i) to investigate the distribution patterns of Odonata in streams on a nationwide scale across South Korea; (ii) to evaluate the relationships between the distribution patterns of odonates and their environmental conditions; and (iii) to identify indicator species and the most significant environmental factors affecting their distributions. Samples were collected from 965 sampling sites in streams across South Korea. We also measured 34 environmental variables grouped into six categories: geography, meteorology, land use, substrate composition, hydrology, and physicochemistry. A total of 83 taxa belonging to 10 families of Odonata were recorded in the dataset. Among them, eight species displayed high abundances and incidences. Self-organizing map (SOM) classified sampling sites into seven clusters (A–G) which could be divided into two distinct groups (A–C and D–G) according to the similarities of their odonate assemblages. Clusters A–C were characterized by members of the suborder Anisoptera, whereas clusters D–G were characterized by the suborder Zygoptera. Non-metric multidimensional scaling (NMDS) identified forest (%), altitude, and cobble (%) in substrata as the most influential environmental factors determining odonate assemblage compositions. Our results emphasize the importance of habitat heterogeneity by demonstrating its effect on odonate assemblages.


2021 ◽  
Author(s):  
Ricardo Monedero-Contreras ◽  
Francisca Martinez-Ruiz ◽  
Francisco J. Rodríguez-Tovar ◽  
David Gallego-Torres ◽  
Gert J. de Lange

Diversity ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 186
Author(s):  
Khishigdelger Enkhtur ◽  
Bazartseren Boldgiv ◽  
Martin Pfeiffer

Geometrids are a species-rich group of moths that serve as reliable indicators for environmental changes. Little is known about the Mongolian moth fauna, and there is no comprehensive review of species richness, diversity, and distribution patterns of geometrid moths in the country. Our study aims to review the existing knowledge on geometrid moths in Mongolia. We compiled geometrid moth records from published scientific papers, our own research, and from the Global Biodiversity Information Facility (GBIF) to produce a checklist of geometrid moths of Mongolia. Additionally, we analyzed spatial patterns, species richness, and diversity of geometrid moths within 14 ecoregions of Mongolia and evaluated environmental variables for their distribution. In total, we compiled 1973-point records of 388 geometrid species. The most species-rich ecoregion in Mongolia was Daurian Forest Steppe with 142 species. Annual precipitation and maximum temperature of the warmest month were the most important environmental variables that correlated with NMDS axes in an analysis of geometrid assemblages of different ecoregions in Mongolia.


1999 ◽  
Vol 36 (10) ◽  
pp. 1617-1643 ◽  
Author(s):  
Rebecca A Stritch ◽  
Claudia J Schröder-Adams

Albian foraminiferal assemblages from three wells in northwestern (Imperial Spirit River No. 1, 12-20-78-6W6), central (AngloHome C&E Fort Augustus No. 1, 7-29-55-21W4), and southern Alberta (Amoco B1 Youngstown, 6-34-30-8W4) provide the basis to track a fluctuating sea-level history in western Canada. Two global second-order marine cycles (Kiowa - Skull Creek and Greenhorn) were punctuated by higher frequency relative sea-level cycles expressed during the time of the Moosebar-Clearwater, Hulcross, Joli Fou, and Mowry seas. A total of 34 genera and 93 subgeneric taxa are recognized in these Albian-age strata. Foraminiferal abundance and species diversity of the latest Albian Mowry Sea were higher than in the early to middle Albian Moosebar-Clearwater and Hulcross seas. The two earliest paleo-seas were shallow embayments of the Boreal Sea, and relative sea-level fluctuations caused variable marine to brackish conditions expressed in a variety of faunal assemblages. Towards the late Albian, relative sea level rose, deepening the basin and establishing increased marine conditions and more favourable habitats for foraminifera. In the deeper Joli Fou Seaway and Mowry Sea, however, reduced bottom water oxygen through stratification or stagnant circulation caused times of diminished benthic faunas. The Bluesky Formation in northwestern Alberta contains the initial transgression of the early Albian Moosebar-Clearwater Sea and is marked by a sudden faunal increase. In contrast, transgression by the late late Albian Mowry Sea was associated with a gradual increase of foraminiferal faunas. Numerous agglutinated species range throughout the entire Albian, absent only at times of basin shallowing. However, each major marine incursion throughout the Albian introduced new taxa.


Preservation of soft integument in calcareous nodules seems to be more widespread geographically and stratigraphically than hitherto realized. It cannot be recognized in the field, and to recover such material requires special etching techniques. Such preservation can be of exceptional quality, with fossils preserved three dimensionally either by secondary phosphatization or by silicification. Coating as well as the replacement of integument has been observed even within the same sample. Methodical search for such preservation may be based on the common denominators of depositional, geochemical, and environmental indicators in previously described occurrences. As such exceptionally preserved material may be rare within the samples, large quantities of rock have to be prepared. The examples described here are from anthraconitic limestones (Orsten) of the Upper Cambrian Alum Shale Formation in Sweden. They are now known from many localities and from different trilobite zones. In addition nodules from the Lower Cretaceous Santana Formation in Brazil, the Upper Devonian cephalopod limestone in the Carnic Alps, the Lower Triassic of Spitzbergen and the Miocene Barstow Formation in California have all yielded extremely fine material.


Sign in / Sign up

Export Citation Format

Share Document