scholarly journals Tracing carbon assimilation in endosymbiotic deep-sea hydrothermal vent Mytilid fatty acids by <sup>13</sup>C-fingerprinting

2010 ◽  
Vol 7 (3) ◽  
pp. 3453-3475 ◽  
Author(s):  
V. Riou ◽  
S. Bouillon ◽  
R. Serrão Santos ◽  
F. Dehairs ◽  
A. Colaço

Abstract. Bathymodiolus azoricus mussels thrive at Mid-Atlantic Ridge hydrothermal vents, where part of their energy requirements are met via an endosymbiotic association with chemolithotrophic and methanotrophic bacteria. In an effort to describe phenotypic characteristics of the two bacterial endosymbionts and to assess their ability to assimilate CO2, CH4 and multi-carbon compounds, we performed experiments in aquaria using 13C-labeled NaHCO3 (in the presence of H2S), CH4 or amino-acids and traced the incorporation of 13C into total and phospholipid fatty acids (tFA and PLFA, respectively). 14:0, 15:0, 16:1(n-7)c+t and 18:1(n-7)c+t PLFA were labeled in the presence of H13CO3- (+H2S) and 13CH4, while the 12:0 compound became labeled only in the presence of H13CO3− (+H2S). In contrast, the 16:1(n-9), 16:1(n-8) and (n-6), 18:1(n-8)c and (n-7), 20:1(n-7) and 18:2(n-7) PLFA were only labeled in the presence of 13CH4. Some of these symbiont-specific fatty acids also appeared to be labeled in mussel gill tFA when incubated with 13C-enriched amino acids, and so were mussel-specific fatty acids such as 22:2(n-7,15). Our results provide experimental evidence for the potential of specific fatty acid markers to distinguish between the two endosymbiotic bacteria, shedding new light on C1 and multi-carbon compound metabolic pathways in B. azoricus and its symbionts.

2010 ◽  
Vol 7 (9) ◽  
pp. 2591-2600 ◽  
Author(s):  
V. Riou ◽  
S. Bouillon ◽  
R. Serrão Santos ◽  
F. Dehairs ◽  
A. Colaço

Abstract. Bathymodiolus azoricus mussels thrive at Mid-Atlantic Ridge hydrothermal vents, where part of their energy requirements are met via an endosymbiotic association with chemolithotrophic and methanotrophic bacteria. In an effort to describe phenotypic characteristics of the two bacterial endosymbionts and to assess their ability to assimilate CO2, CH4 and multi-carbon compounds, we performed experiments in aquaria using 13C-labeled NaHCO3 (in the presence of H2S), CH4 or amino-acids and traced the incorporation of 13C into total and phospholipid fatty acids (tFA and PLFA, respectively). 14:0; 15:0; 16:0; 16:1(n − 7)c+t; 18:1(n − 13)c+t and (n − 7)c+t; 20:1(n − 7); 20:2(n − 9,15); 18:3(n − 7) and (n − 5,10,13) PLFA were labeled in the presence of H13CO3− (+H2S) and 13CH4, while the 12:0 compound became labeled only in the presence of H13CO3− (+H2S). In contrast, the 17:0; 18:0; 16:1(n − 9); 16:1(n − 8) and (n − 6); 18:1(n − 8); and 18:2(n − 7) PLFA were only labeled in the presence of 13CH4. Some of these symbiont-specific fatty acids also appeared to be labeled in mussel gill tFA when incubated with 13C-enriched amino acids, and so were mussel-specific fatty acids such as 22:2(n − 7,15). Our results provide experimental evidence for the potential of specific fatty acid markers to distinguish between the two endosymbiotic bacteria, shedding new light on C1 and multi-carbon compound metabolic pathways in B. azoricus and its symbionts.


2008 ◽  
Vol 5 (3) ◽  
pp. 2279-2304 ◽  
Author(s):  
V. Riou ◽  
S. Halary ◽  
S. Duperron ◽  
S. Bouillon ◽  
M. Elskens ◽  
...  

Abstract. High densities of mussels of the genus Bathymodiolus are present at hydrothermal vents of the Mid-Atlantic Ridge. It was already proposed that the chemistry at vent sites would affect their sulphide- and methane-oxidizing endosymbionts' abundance. In this study, we confirmed the latter assumption using fluorescence in situ hybridization on Bathymodiolus azoricus specimens maintained in a controlled laboratory environment at atmospheric pressure with one, both or none of the chemical substrates. A high level of symbiosis plasticity was observed, methane-oxidizers occupying between 4 and 39% of total bacterial area and both symbionts developing accordingly to the presence or absence of their substrates. Using H13CO3− in the presence of sulphide, 13CH4 or 13CH3OH, we monitored carbon assimilation by the endosymbionts and its translocation to symbiont-free mussel tissues. Although no significant carbon assimilation could be evidenced with methanol, carbon was incorporated from methane and sulphide-oxidized inorganic carbon at rates 3 to 10 times slower in the host muscle tissue than in the symbiont-containing gill tissue. Both symbionts thus contribute actively to B. azoricus nutrition and adapt to the availability of their substrates. Further experiments with varying substrate concentrations using the same set-up should provide useful tools to study and even model the effects of changes in hydrothermal fluids on B. azoricus' chemosynthetic nutrition.


2010 ◽  
Vol 44 (5) ◽  
pp. 387-397 ◽  
Author(s):  
VERENA KLEVENZ ◽  
ARYANI SUMOONDUR ◽  
CHRISTIAN OSTERTAG-HENNING ◽  
ANDREA KOSCHINSKY

2008 ◽  
Vol 5 (6) ◽  
pp. 1681-1691 ◽  
Author(s):  
V. Riou ◽  
S. Halary ◽  
S. Duperron ◽  
S. Bouillon ◽  
M. Elskens ◽  
...  

Abstract. High densities of mussels of the genus Bathymodiolus are present at hydrothermal vents of the Mid-Atlantic Ridge. It was previously proposed that the chemistry at vent sites would affect their sulphide- and methane-oxidizing endosymbionts' abundance. In this study, we confirmed the latter assumption using fluorescence in situ hybridization on Bathymodiolus azoricus specimens maintained in a controlled laboratory environment at atmospheric pressure with one, both or none of the chemical substrates. A high level of symbiosis plasticity was observed, methane-oxidizers occupying between 4 and 39% of total bacterial area and both symbionts developing according to the presence or absence of their substrates. Using H13CO3− in the presence of sulphide, or 13CH4, we monitored carbon assimilation by the endosymbionts and its translocation to symbiont-free mussel tissues. Carbon was incorporated from methane and sulphide-oxidized inorganic carbon at rates 3 to 10 times slower in the host muscle tissue than in the symbiont-containing gill tissue. Both symbionts thus contribute actively to B. azoricus nutrition and adapt to the availability of their substrates. Further experiments with varying substrate concentrations using the same set-up should provide useful tools to study and even model the effects of changes in hydrothermal fluids on B. azoricus' chemosynthetic nutrition.


2006 ◽  
Vol 361 (1474) ◽  
pp. 1689-1702 ◽  
Author(s):  
Max Bernstein

One of the greatest puzzles of all time is how did life arise? It has been universally presumed that life arose in a soup rich in carbon compounds, but from where did these organic molecules come? In this article, I will review proposed terrestrial sources of prebiotic organic molecules, such as Miller–Urey synthesis (including how they would depend on the oxidation state of the atmosphere) and hydrothermal vents and also input from space. While the former is perhaps better known and more commonly taught in school, we now know that comet and asteroid dust deliver tons of organics to the Earth every day, therefore this flux of reduced carbon from space probably also played a role in making the Earth habitable. We will compare and contrast the types and abundances of organics from on and off the Earth given standard assumptions. Perhaps each process provided specific compounds (amino acids, sugars, amphiphiles) that were directly related to the origin or early evolution of life. In any case, whether planetary, nebular or interstellar, we will consider how one might attempt to distinguish between abiotic organic molecules from actual signs of life as part of a robotic search for life in the Solar System.


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 1010-P
Author(s):  
VICTORIA E. PARKER ◽  
DARREN ROBERTSON ◽  
TAO WANG ◽  
DAVID C. HORNIGOLD ◽  
MAXIMILIAN G. POSCH ◽  
...  

2020 ◽  
Vol 21 (8) ◽  
pp. 785-798 ◽  
Author(s):  
Abedin Abdallah ◽  
Evera Elemba ◽  
Qingzhen Zhong ◽  
Zewei Sun

The gastrointestinal tract (GIT) of humans and animals is host to a complex community of different microorganisms whose activities significantly influence host nutrition and health through enhanced metabolic capabilities, protection against pathogens, and regulation of the gastrointestinal development and immune system. New molecular technologies and concepts have revealed distinct interactions between the gut microbiota and dietary amino acids (AAs) especially in relation to AA metabolism and utilization in resident bacteria in the digestive tract, and these interactions may play significant roles in host nutrition and health as well as the efficiency of dietary AA supplementation. After the protein is digested and AAs and peptides are absorbed in the small intestine, significant levels of endogenous and exogenous nitrogenous compounds enter the large intestine through the ileocaecal junction. Once they move in the colonic lumen, these compounds are not markedly absorbed by the large intestinal mucosa, but undergo intense proteolysis by colonic microbiota leading to the release of peptides and AAs and result in the production of numerous bacterial metabolites such as ammonia, amines, short-chain fatty acids (SCFAs), branched-chain fatty acids (BCFAs), hydrogen sulfide, organic acids, and phenols. These metabolites influence various signaling pathways in epithelial cells, regulate the mucosal immune system in the host, and modulate gene expression of bacteria which results in the synthesis of enzymes associated with AA metabolism. This review aims to summarize the current literature relating to how the interactions between dietary amino acids and gut microbiota may promote host nutrition and health.


Sign in / Sign up

Export Citation Format

Share Document