scholarly journals Annual emissions of CH<sub>4</sub> and N<sub>2</sub>O, and ecosystem respiration, from eight organic soils in Western Denmark managed by agriculture

2011 ◽  
Vol 8 (5) ◽  
pp. 10017-10067 ◽  
Author(s):  
S. O. Petersen ◽  
C. C. Hoffmann ◽  
C.-M. Schäfer ◽  
G. Blicher-Mathiesen ◽  
L. Elsgaard ◽  
...  

Abstract. The use of organic soils by agriculture involves drainage and tillage, and the resulting increase in C and N turnover can significantly affect their greenhouse gas balance. This study estimated annual fluxes of CH4 and N2O, and ecosystem respiration (Reco), from eight organic soils managed by agriculture. The sites were located in three regions representing different landscape types and climatic conditions, and three land use categories (arable crops, AR, grass in rotation, RG, and permanent grass, PG) were covered. The normal management at each site was followed, except that no N inputs occurred during the monitoring period from August 2008 to October 2009. The stratified sampling strategy further included six sampling points in three blocks at each site. Environmental variables (precipitation, PAR, air and soil temperature, soil moisture, groundwater level) were monitored continuously and during sampling campaigns, where also groundwater samples were taken for analysis. Gaseous fluxes were monitored on a three-weekly basis, giving 51, 49 and 38 field campaigns for land use categories AR, PG and RG, respectively. Climatic conditions in each region during monitoring were representative based on 20-yr averages. Peat layers were shallow, typically 0.5 to 1 m, and with a pH of 4–5. At six sites annual emissions of N2O were in the range 3 to 24 kg N2O-N ha−1, but at two arable sites (spring barley, potato) net emissions of 38 and 61 kg N2O-N ha−1 were recorded. Both were characterized by fluctuating groundwater with elevated SO42− concentrations. Annual fluxes of CH4 were generally small, as expected, ranging from –2 to 4 kg CH4 ha−1. However, two permanent grasslands had tussocks of Juncus effusus (soft rush) in sampling points that were consistent sources of CH4 throughout the year. Emission factors for organic soils in rotation and permanent grass, respectively, were estimated to be 0.011 and 0.47 g m−2 for CH4, and 2.5 and 0.5 g m−2 for N2O. This first documentation of CH4 and N2O emissions from managed organic soils in Denmark confirms the levels and wide ranges of emissions previously reported for this region. However, the factorial approach also identified links between gaseous emissions and site-specific conditions with respect to soil, groundwater and vegetation which point to areas of future research that may account for part of the variability and hence lead to improved emission factors or models.

2012 ◽  
Vol 9 (1) ◽  
pp. 403-422 ◽  
Author(s):  
S. O. Petersen ◽  
C. C. Hoffmann ◽  
C.-M. Schäfer ◽  
G. Blicher-Mathiesen ◽  
L. Elsgaard ◽  
...  

Abstract. The use of organic soils by agriculture involves drainage and tillage, and the resulting increase in C and N turnover can significantly affect their greenhouse gas balance. This study estimated annual fluxes of CH4 and N2O, and ecosystem respiration (Reco), from eight organic soils managed by agriculture. The sites were located in three regions representing different landscape types and climatic conditions, and three land use categories were covered (arable crops, AR, grass in rotation, RG, and permanent grass, PG). The normal management at each site was followed, except that no N inputs occurred during the monitoring period from August 2008 to October 2009. The stratified sampling strategy further included six sampling points in three blocks at each site. Environmental variables (precipitation, PAR, air and soil temperature, soil moisture, groundwater level) were monitored continuously and during sampling campaigns, where also groundwater samples were taken for analysis. Gaseous fluxes were monitored on a three-weekly basis, giving 51, 49 and 38 field campaigns for land use categories AR, PG and RG, respectively. Climatic conditions in each region during monitoring were representative as compared to 20-yr averages. Peat layers were shallow, typically 0.5 to 1 m, and with a pH of 4 to 5. At six sites annual emissions of N2O were in the range 3 to 24 kg N2O-N ha−1, but at two arable sites (spring barley, potato) net emissions of 38 and 61 kg N2O-N ha−1 were recorded. The two high-emitting sites were characterized by fluctuating groundwater, low soil pH and elevated groundwater SO42− concentrations. Annual fluxes of CH4 were generally small, as expected, ranging from 2 to 4 kg CH4 ha−1. However, two permanent grasslands had tussocks of Juncus effusus L. (soft rush) in sampling points that were consistent sources of CH4 throughout the year. Emission factors for organic soils in rotation and with permanent grass, respectively, were estimated to be 0.011 and 0.47 g m−2 for CH4, and 2.5 and 0.5 g m−2 for N2O. This first documentation of CH4 and N2O emissions from managed organic soils in Denmark confirms the levels and wide ranges of emissions previously reported for the Nordic countries. However, the stratified experimental design also identified links between gaseous emissions and site-specific conditions with respect to soil, groundwater and vegetation which point to areas of future research that may account for part of the variability and hence lead to improved emission factors or models.


2014 ◽  
Vol 11 (23) ◽  
pp. 6595-6612 ◽  
Author(s):  
T. Leppelt ◽  
R. Dechow ◽  
S. Gebbert ◽  
A. Freibauer ◽  
A. Lohila ◽  
...  

Abstract. Organic soils are a main source of direct emissions of nitrous oxide (N2O), an important greenhouse gas (GHG). Observed N2O emissions from organic soils are highly variable in space and time, which causes high uncertainties in national emission inventories. Those uncertainties could be reduced when relating the upscaling process to a priori-identified key drivers by using available N2O observations from plot scale in empirical approaches. We used the empirical fuzzy modelling approach MODE to identify main drivers for N2O and utilize them to predict the spatial emission pattern of European organic soils. We conducted a meta-study with a total amount of 659 annual N2O measurements, which was used to derive separate models for different land use types. We applied our models to available, spatially explicit input driver maps to upscale N2O emissions at European level and compared the inventory with recently published IPCC emission factors. The final statistical models explained up to 60% of the N2O variance. Our study results showed that cropland and grasslands emitted the highest N2O fluxes 0.98 ± 1.08 and 0.58 ± 1.03 g N2O-N m−2 a−1, respectively. High fluxes from cropland sites were mainly controlled by low soil pH value and deep-drained groundwater tables. Grassland hotspot emissions were strongly related to high amount of N-fertilizer inputs and warmer winter temperatures. In contrast, N2O fluxes from natural peatlands were predominantly low (0.07 ± 0.27 g N2O-N m−2 a−1) and we found no relationship with the tested drivers. The total inventory for direct N2O emissions from organic soils in Europe amount up to 149.5 Gg N2O-N a−1, which also included fluxes from forest and peat extraction sites and exceeds the inventory calculated by IPCC emission factors of 87.4 Gg N2O-N a−1. N2O emissions from organic soils represent up to 13% of total European N2O emissions reported in the European Union (EU) greenhouse gas inventory of 2011 from only 7% of the EU area. Thereby the model demonstrated that the major part (85%) of the inventory is induced by anthropogenic management, which shows the significant reduction potential by rewetting and extensification of agriculturally used peat soils.


2019 ◽  
Vol 16 (23) ◽  
pp. 4687-4703 ◽  
Author(s):  
Jyrki Jauhiainen ◽  
Jukka Alm ◽  
Brynhildur Bjarnadottir ◽  
Ingeborg Callesen ◽  
Jesper R. Christiansen ◽  
...  

Abstract. Drained organic forest soils in boreal and temperate climate zones are believed to be significant sources of the greenhouse gases (GHGs) carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), but the annual fluxes are still highly uncertain. Drained organic soils exemplify systems where many studies are still carried out with relatively small resources, several methodologies and manually operated systems, which further involve different options for the detailed design of the measurement and data analysis protocols for deriving the annual flux. It would be beneficial to set certain guidelines for how to measure and report the data, so that data from individual studies could also be used in synthesis work based on data collation and modelling. Such synthesis work is necessary for deciphering general patterns and trends related to, e.g., site types, climate, and management, and the development of corresponding emission factors, i.e. estimates of the net annual soil GHG emission and removal, which can be used in GHG inventories. Development of specific emission factors also sets prerequisites for the background or environmental data to be reported in individual studies. We argue that wide applicability greatly increases the value of individual studies. An overall objective of this paper is to support future monitoring campaigns in obtaining high-value data. We analysed peer-reviewed publications presenting CO2, CH4 and N2O flux data for drained organic forest soils in boreal and temperate climate zones, focusing on data that have been used, or have the potential to be used, for estimating net annual soil GHG emissions and removals. We evaluated the methods used in data collection and identified major gaps in background or environmental data. Based on these, we formulated recommendations for future research.


2015 ◽  
Vol 12 (2) ◽  
pp. 595-606 ◽  
Author(s):  
S. Karki ◽  
L. Elsgaard ◽  
P. E. Lærke

Abstract. Cultivation of bioenergy crops in rewetted peatland (paludiculture) is considered as a possible land use option to mitigate greenhouse gas (GHG) emissions. However, bioenergy crops like reed canary grass (RCG) can have a complex influence on GHG fluxes. Here we determined the effect of RCG cultivation on GHG emission from peatland rewetted to various extents. Mesocosms were manipulated to three different ground water levels (GWLs), i.e. 0, −10 and −20 cm below the soil surface in a controlled semi-field facility. Emissions of CO2 (ecosystem respiration, ER), CH4 and N2O from mesocosms with RCG and bare soil were measured at weekly to fortnightly intervals with static chamber techniques for a period of 1 year. Cultivation of RCG increased both ER and CH4 emissions, but decreased the N2O emissions. The presence of RCG gave rise to 69, 75 and 85% of total ER at −20, −10 and 0 cm GWL, respectively. However, this difference was due to decreased soil respiration at the rising GWL as the plant-derived CO2 flux was similar at all three GWLs. For methane, 70–95% of the total emission was due to presence of RCG, with the highest contribution at −20 cm GWL. In contrast, cultivation of RCG decreased N2O emission by 33–86% with the major reductions at −10 and −20 cm GWL. In terms of global warming potential, the increase in CH4 emissions due to RCG cultivation was more than offset by the decrease in N2O emissions at −10 and −20 cm GWL; at 0 cm GWL the CH4 emissions was offset only by 23%. CO2 emissions from ER were obviously the dominant RCG-derived GHG flux, but above-ground biomass yields, and preliminary measurements of gross photosynthetic production, showed that ER could be more than balanced due to the photosynthetic uptake of CO2 by RCG. Our results support that RCG cultivation could be a good land use option in terms of mitigating GHG emission from rewetted peatlands, potentially turning these ecosystems into a sink of atmospheric CO2.


2016 ◽  
Vol 30 (4) ◽  
pp. 501-507 ◽  
Author(s):  
Alina Syp ◽  
Antoni Faber ◽  
Małgorzata Kozak

Abstract The aim of this study was to compare four tools for calculation of nitrous oxide (N2O) emissions under the renewable energy directive. All the tools follow the methodology of the international panel on climate change. The first calculations of N2O fluxes were based on the Tier 1 method using the BioGrace tool. The second and the third ones followed the Tier 2 methodology, applying the global nitrous oxide calculator and the Lesschen emission factors, respectively. The last assessment was performed in accordance with the Tier 3 approach by using the denitrification- decomposition model. The N2O fluxes were calculated for rapeseed cultivation in a 4-year crop rotation in Poland. The same input data were applied in all methods. The average of N2O emissions varied in the range of 1.99-3.78 kg N2O ha-1 y-1, depending on the approach used (Lesschen emission factors > denitrificationdecomposition > global nitrous oxide calculator > BioGrace). This paper illustrates that, at country level, the Lesschen emission factors method worked as well as the denitrification-decomposition model for Poland. The advantage of this approach is the simplicity of collecting the necessary data, in contrast to process-based modelling. Moreover, the Tier 2 method provides mitigation measures similar to the denitrification-decomposition model, related to crop type, climatic conditions, and management practices.


2009 ◽  
Vol 43 (21) ◽  
pp. 3305-3309 ◽  
Author(s):  
Changsheng Jiang ◽  
Yuesi Wang ◽  
Qingju Hao ◽  
Changchun Song

2014 ◽  
Vol 11 (6) ◽  
pp. 9135-9182
Author(s):  
T. Leppelt ◽  
R. Dechow ◽  
S. Gebbert ◽  
A. Freibauer ◽  
A. Lohila ◽  
...  

Abstract. Organic soils are a main source of direct nitrous oxide (N2O) emissions, an important greenhouse gas (GHG). Observed N2O emissions from organic soils are highly variable in space and time which causes high uncertainties in national emission inventories. Those uncertainties could be reduced when relating the upscaling process to a priori identified key drivers by using available N2O observations from plot scale in empirical approaches. We used the empirical fuzzy modelling approach MODE to identify main drivers for N2O and utilize them to predict the spatial emission pattern of European organic soils. We conducted a meta study with a total amount of 659 annual N2O measurements which was used to derive separate models for different land use types. We applied our models to available, spatial explicit input driver maps to upscale N2O emissions on European level and compared the inventory with recently published IPCC emission factors. The final statistical models explained up to 60% of the N2O variance. Our study results showed that cropland and grasslands emitted the highest N2O fluxes 0.98 ± 1.08 and 0.58 ± 1.03 g N2O-N m−2 a−1, respectively. High fluxes from cropland sites were mainly controlled by low soil pH-value and deep drained groundwater tables. Grassland hotspot emissions were strongly related to high amount of N-fertilizer inputs and warmer winter temperatures. In contrast N2O fluxes from natural peatlands were predominantly low (0.07±0.27 g N2O-N m−2 a−1) and we found no relationship with the tested drivers. The total inventory for direct N2O emissions from organic soils in Europe amount up to 149.5 Gg N2O-N a−1, which included also fluxes from forest and peat extraction sites and exceeds the inventory calculated by IPCC emission factors of 87.4 Gg N2O-N a−1. N2O emissions from organic soils represent up to 13% of total European N2O emissions reported in the European Union (EU) greenhouse gas inventory of 2011 from only 7% of the EU area. Thereby the model demonstrated that with up to 85% the major part of the inventory is induced by anthropogenic management, which shows the significant reduction potential by rewetting and extensivation of agricultural used peat soils.


2019 ◽  
Author(s):  
Jyrki Jauhiainen ◽  
Jukka Alm ◽  
Brynhildur Bjarnadottir ◽  
Ingeborg Callesen ◽  
Jesper R. Christiansen ◽  
...  

Abstract. Drained organic forest soils in boreal and temperate climate zones are believed to be significant sources of the greenhouse gases (GHG) carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), but the annual fluxes are still highly uncertain. Drained organic soils exemplify systems where many studies are still carried out with relatively small resources, several methodologies and manually operated systems, which further involve different options for the detailed design of the measurement and data analysis protocols for deriving the annual flux. It would be beneficial to set certain guidelines for how to measure and report the data, so that data from individual studies could also be used in synthesis work based on data collation and modelling. Such synthesis work is necessary for deciphering general patterns and trends related to, e.g., site types, climate, and management, and the development of corresponding emission factors, i.e., estimates of the net annual soil GHG emission/removal, which can be used in GHG inventories. Development of specific emission factors also sets prerequisites for the background or environmental data to be reported in individual studies. We argue that wide applicability greatly increases the value of individual studies. An overall objective of this paper is to support future monitoring campaigns in obtaining high-value data. We analysed peer-reviewed publications presenting CO2, CH4 and N2O flux data for drained organic forest soils in boreal and temperate climate zones, focusing on data that have been used, or have the potential to be used, for estimating net annual soil GHG emission/removals. We evaluated the methods used in data collection, and identified major gaps in background/environmental data. Based on these, we formulated recommendations for future research.


2006 ◽  
Vol 52 (3) ◽  
pp. 529-539 ◽  
Author(s):  
Lihua Zhang ◽  
Changchun Song ◽  
Xunhua Zheng ◽  
Dexuan Wang ◽  
Yiyong Wang

2002 ◽  
Vol 16 (3) ◽  
pp. 22-1-22-11 ◽  
Author(s):  
Shigehiro Ishizuka ◽  
Haruo Tsuruta ◽  
Daniel Murdiyarso

Sign in / Sign up

Export Citation Format

Share Document