scholarly journals Intra-versus inter-site macroscale variation in biogeochemical properties along a paddy soil chronosequence

2011 ◽  
Vol 8 (5) ◽  
pp. 10119-10154
Author(s):  
C. Mueller-Niggemann ◽  
A. Bannert ◽  
M. Schloter ◽  
E. Lehndorff ◽  
L. Schwark

Abstract. In order to assess the intrinsic heterogeneity of paddy soils, a set of biogeochemical soil parameters was investigated in five field replicates of seven paddy fields (50, 100, 300, 500, 700, 1000, and 2000 yr of wetland rice cultivation), one flooded paddy nursery, one tidal wetland (TW), and one freshwater site (FW) from a coastal area at Hangzhou Bay, Zhejiang Province, China. All soils evolved from a marine tidal flat substrate due to land reclamation. The biogeochemical parameters based on their properties were differentiated into (i) a group behaving conservatively (TC, TOC, TN, TS, magnetic susceptibility, soil lightness and colour parameters, δ13C, δ15N, lipids and n-alkanes) and (ii) one encompassing more labile properties or fast cycling components (Nmic, Cmic, nitrate, ammonium, DON and DOC). The macroscale heterogeneity in paddy soils was assessed by evaluating intra- versus inter-site spatial variability of biogeochemical properties using statistical data analysis (descriptive, explorative and non-parametric). Results show that the intrinsic heterogeneity of paddy soil organic and minerogenic components per field is smaller than between study sites. The coefficient of variation (CV) values of conservative parameters varied in a low range (10 % to 20 %), decreasing from younger towards older paddy soils. This indicates a declining variability of soil biogeochemical properties in longer used cropping sites according to progress in soil evolution. A generally higher variation of CV values (>20–40 %) observed for labile parameters implies a need for substantially higher sampling frequency when investigating these as compared to more conservative parameters. Since the representativeness of the sampling strategy could be sufficiently demonstrated, an investigation of long-term carbon accumulation/sequestration trends in topsoils of the 2000 year paddy chronosequence under wetland rice cultivation was conducted. The evolutionary trend showed that the biogeochemical signatures characteristic for paddy soils were fully developed in less than 300 yr since onset of wetland rice cultivation. A six-fold increase of topsoil TOC suggests a substantial gain in CO2 sequestration potential when marine tidal wetland substrate developed to 2000 year old paddy soil.

2012 ◽  
Vol 9 (3) ◽  
pp. 1237-1251 ◽  
Author(s):  
C. Mueller-Niggemann ◽  
A. Bannert ◽  
M. Schloter ◽  
E. Lehndorff ◽  
L. Schwark

Abstract. In order to assess the intrinsic heterogeneity of paddy soils, a set of biogeochemical soil parameters was investigated in five field replicates of seven paddy fields (50, 100, 300, 500, 700, 1000, and 2000 yr of wetland rice cultivation), one flooded paddy nursery, one tidal wetland (TW), and one freshwater site (FW) from a coastal area at Hangzhou Bay, Zhejiang Province, China. All soils evolved from a marine tidal flat substrate due to land reclamation. The biogeochemical parameters based on their properties were differentiated into (i) a group behaving conservatively (TC, TOC, TN, TS, magnetic susceptibility, soil lightness and colour parameters, δ13C, δ15N, lipids and n-alkanes) and (ii) one encompassing more labile properties or fast cycling components (Nmic, Cmic, nitrate, ammonium, DON and DOC). The macroscale heterogeneity in paddy soils was assessed by evaluating intra- versus inter-site spatial variability of biogeochemical properties using statistical data analysis (descriptive, explorative and non-parametric). Results show that the intrinsic heterogeneity of paddy soil organic and minerogenic components per field is smaller than between study sites. The coefficient of variation (CV) values of conservative parameters varied in a low range (10% to 20%), decreasing from younger towards older paddy soils. This indicates a declining variability of soil biogeochemical properties in longer used cropping sites according to progress in soil evolution. A generally higher variation of CV values (>20–40%) observed for labile parameters implies a need for substantially higher sampling frequency when investigating these as compared to more conservative parameters. Since the representativeness of the sampling strategy could be sufficiently demonstrated, an investigation of long-term carbon accumulation/sequestration trends in topsoils of the 2000 yr paddy chronosequence under wetland rice cultivation restricted was conducted. Observations cannot be extrapolated to global scale but with coastal paddy fields developed on marine tidal flat substrates after land reclamation in the Zhejiang Province represent a small fraction (<1%) of the total rice cropping area. The evolutionary trend showed that the biogeochemical signatures characteristic for paddy soils were fully developed in less than 300 yr since onset of wetland rice cultivation. A six-fold increase of topsoil TOC suggests a substantial gain in CO2 sequestration potential when marine tidal wetland substrate developed to 2000 yr old paddy soil.


2011 ◽  
Vol 77 (17) ◽  
pp. 6109-6116 ◽  
Author(s):  
Andrea Bannert ◽  
Kristina Kleineidam ◽  
Livia Wissing ◽  
Cornelia Mueller-Niggemann ◽  
Vanessa Vogelsang ◽  
...  

ABSTRACTIn many areas of China, tidal wetlands have been converted into agricultural land for rice cultivation. However, the consequences of land use changes for soil microbial communities are poorly understood. Therefore, we investigated bacterial and archaeal communities involved in inorganic nitrogen turnover (nitrogen fixation, nitrification, and denitrification) based on abundances and relative species richness of the corresponding functional genes along a soil chronosequence ranging between 50 and 2,000 years of paddy soil management compared to findings for a tidal wetland. Changes in abundance and diversity of the functional groups could be observed, reflecting the different chemical and physical properties of the soils, which changed in terms of soil development. The tidal wetland was characterized by a low microbial biomass and relatively high abundances of ammonia-oxidizing microbes. Conversion of the tidal wetlands into paddy soils was followed by a significant increase in microbial biomass. Fifty years of paddy management resulted in a higher abundance of nitrogen-fixing microbes than was found in the tidal wetland, whereas dominant genes of nitrification and denitrification in the paddy soils showed no differences. With ongoing rice cultivation, copy numbers of archaeal ammonia oxidizers did not change, while that of their bacterial counterparts declined. ThenirKgene, coding for nitrite reductase, increased with rice cultivation time and dominated its functionally redundant counterpart,nirS, at all sites under investigation. Relative species richness showed significant differences between all soils with the exception of the archaeal ammonia oxidizers in the paddy soils cultivated for 100 and 300 years. In general, changes in diversity patterns were more pronounced than those in functional gene abundances.


2019 ◽  
Vol 55 (8) ◽  
pp. 767-776 ◽  
Author(s):  
Yinhang Xia ◽  
Xiangbi Chen ◽  
Yajun Hu ◽  
Shengmeng Zheng ◽  
Zhao Ning ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
pp. 1
Author(s):  
I DEWA MADE ARTHAGAMA ◽  
I MADE DANA

 Evaluation Quality of Intensif Paddy Soils and Conversion Paddy Soils to Garden at Subak Kesiut Kerambitan Tabanan. This experiment conducted to evaluate intensif Paddy Soils and conversion paddy soils to garden at SubakKesiut Kerambitan Tabanan. There were two steps applied in this study including field survey to determine the research area and points soils sampling; analysis soils properties are: physic, chemistry and soils biology for get minimum data set to determine the soil quality at Laboratory of Soils and Enveronment Faculty of Agriculture Unud. The results of this study showed: the soil quality of intensif paddy soils is better than conversion paddy soils to garden, that showed with SQR at intensif paddy soil is 18 and at conversions paddy soil is 25. The limiting faktor at conversion paddy soils to garden is P available, there are less than at intensif paddy soils.


2018 ◽  
Vol 84 (17) ◽  
Author(s):  
Arjun Pandey ◽  
Helen Suter ◽  
Ji-Zheng He ◽  
Hang-Wei Hu ◽  
Deli Chen

ABSTRACTDissimilatory nitrate reduction to ammonium (DNRA), denitrification, anaerobic ammonium oxidation (anammox), and biological N2fixation (BNF) can influence the nitrogen (N) use efficiency of rice production. While the effect of N application on BNF is known, little is known about its effect on NO3−partitioning between DNRA, denitrification, and anammox. Here, we investigated the effect of N application on DNRA, denitrification, anammox, and BNF and on the abundance of relevant genes in three paddy soils in Australia. Rice was grown in a glasshouse with N fertilizer (150 kg N ha−1) and without N fertilizer for 75 days, and the rhizosphere and bulk soils were collected separately for laboratory incubation and quantitative PCR analysis. Nitrogen application reduced DNRA rates by >16% in all the soils regardless of the rhizospheric zone, but it did not affect thenrfAgene abundance. Without N, the amount and proportion of NO3−reduced by DNRA (0.42 to 0.52 μg g−1soil day−1and 45 to 55%, respectively) were similar to or higher than the amount and proportion reduced by denitrification. However, with N the amount of NO3−reduced by DNRA (0.32 to 0.40 μg g−1soil day−1) was 40 to 50% lower than the amount of NO3−reduced by denitrification. Denitrification loss increased by >20% with N addition and was affected by the rhizospheric zones. Nitrogen loss was minimal through anammox, while BNF added 0.02 to 0.25 μg N g−1soil day−1. We found that DNRA plays a significant positive role in paddy soil N retention, as it accounts for up to 55% of the total NO3−reduction, but this is reduced by N application.IMPORTANCEThis study provides evidence that nitrogen addition reduces nitrogen retention through DNRA and increases nitrogen loss via denitrification in a paddy soil ecosystem. DNRA is one of the major NO3−reduction processes, and it can outcompete denitrification in NO3−consumption when rice paddies are low in nitrogen. A significant level of DNRA activity in paddy soils indicates that DNRA plays an important role in retaining nitrogen by reducing NO3−availability for denitrification and leaching. Our study shows that by reducing N addition to rice paddies, there is a positive effect from reduced nitrogen loss but, more importantly, from the conversion of NO3−to NH4+, which is the favored form of mineral nitrogen for plant uptake.


2011 ◽  
Vol 23 (1) ◽  
pp. 87-94 ◽  
Author(s):  
Shiping Zhang ◽  
Lei Wang ◽  
Jiajun Hu ◽  
Wenquan Zhang ◽  
Xiaohua Fu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document