scholarly journals Responses of CH<sub>4</sub> uptake to the experimental N and P additions in an old-growth tropical forest, Southern China

2011 ◽  
Vol 8 (3) ◽  
pp. 4953-4983 ◽  
Author(s):  
T. Zhang ◽  
W. Zhu ◽  
J. Mo ◽  
L. Liu ◽  
S. Dong

Abstract. It is well established that tropical forest ecosystems are often limited by phosphorus (P) availability, and elevated atmospheric nitrogen (N) deposition may further enhance such P limitation. However, it is uncertain whether P availability would affect soil fluxes of greenhouse gases, such as methane (CH4) uptake, and how P interacts with N deposition. We examine the effects of N and P additions on soil CH4 uptake in an N saturated old-growth tropical forest in Southern China to test the following hypotheses: (1) P addition would increase CH4 uptake; (2) N addition would decrease CH4 uptake; and (3) P addition would mitigate the inhibitive effect of N addition on soil CH4 uptake. Four treatments were conducted at the following levels from February 2007 to October 2009: control, N-addition (15 g N m−2 yr−1), P-addition (15 g P m−2 yr−1), and NP-addition (15 g N m−2 yr−1 plus 15 g P m−2 yr−1). Static chamber and gas chromatography techniques were used to quantify soil CH4 uptake every month throughout the study period. Average CH4 uptake rate was 31.2 ± 1.1 μg CH4-C m−2 h−1 in the control plots. The mean CH4 uptake rate in the N-addition plots was 23.6 ± 0.9 μg CH4-C m−2 h−1, significantly lower than that in the controls. P-addition however, significantly increased CH4 uptake by 24 % (38.8 ± 1.3 μg CH4-C m−2 h−1), whereas NP-addition (33.6 ± 1.0 μg CH4-C m−2 h−1) was not statistically different from the control. Our results suggest that increased P availability may enhance soil mathanotrophic activity and potentially mitigate the inhibitive effect of N deposition on CH4 uptake in tropical forests. Phosphorus and nitrogen treatments also significantly changed the fluxes of greenhouse gases N2O and CO2, altering the net global warming potential (GWP) of this tropical forest located in a high-N deposition zone of Southern China.

2011 ◽  
Vol 8 (9) ◽  
pp. 2805-2813 ◽  
Author(s):  
T. Zhang ◽  
W. Zhu ◽  
J. Mo ◽  
L. Liu ◽  
S. Dong

Abstract. It is well established that tropical forest ecosystems are often limited by phosphorus (P) availability, and elevated atmospheric nitrogen (N) deposition may further enhance such P limitation. However, it is uncertain whether P availability would affect soil fluxes of greenhouse gases, such as methane (CH4) uptake, and how P interacts with N deposition. We examine the effects of N and P additions on soil CH4 uptake in an N saturated old-growth tropical forest in southern China to test the following hypotheses: (1) P addition would increase CH4 uptake; (2) N addition would decrease CH4 uptake; and (3) P addition would mitigate the inhibitive effect of N addition on soil CH4 uptake. Four treatments were conducted at the following levels from February 2007 to October 2009: control, N-addition (150 kg N ha−1 yr−1), P-addition (150 kg P ha−1 yr−1), and NP-addition (150 kg N ha−1 yr−1 plus 150 kg P ha−1 yr−1). Static chamber and gas chromatography techniques were used to quantify soil CH4 uptake every month throughout the study period. Average CH4 uptake rate was 31.2 ± 1.1 μg CH4-C m−2 h−1 in the control plots. The mean CH4 uptake rate in the N-addition plots was 23.6 ± 0.9 μg CH4-C m−2 h−1, significantly lower than that in the controls. P-addition however, significantly increased CH4 uptake by 24% (38.8 ± 1.3 μg CH4-C m−2 h−1), whereas NP-addition (33.6 ± 1.0 μg CH4-C m−2 h−1) was not statistically different from the control. Our results suggest that increased P availability may enhance soil mathanotrophic activity and root growth, resulting in potentially mitigating the inhibitive effect of N deposition on CH4 uptake in tropical forests.


2016 ◽  
Vol 13 (11) ◽  
pp. 3503-3517 ◽  
Author(s):  
Mianhai Zheng ◽  
Tao Zhang ◽  
Lei Liu ◽  
Weixing Zhu ◽  
Wei Zhang ◽  
...  

Abstract. Nitrogen (N) deposition is generally considered to increase soil nitrous oxide (N2O) emission in N-rich forests. In many tropical forests, however, elevated N deposition has caused soil N enrichment and further phosphorus (P) deficiency, and the interaction of N and P to control soil N2O emission remains poorly understood, particularly in forests with different soil N status. In this study, we examined the effects of N and P additions on soil N2O emission in an N-rich old-growth forest and two N-limited younger forests (a mixed and a pine forest) in southern China to test the following hypotheses: (1) soil N2O emission is the highest in old-growth forest due to the N-rich soil; (2) N addition increases N2O emission more in the old-growth forest than in the two younger forests; (3) P addition decreases N2O emission more in the old-growth forest than in the two younger forests; and (4) P addition alleviates the stimulation of N2O emission by N addition. The following four treatments were established in each forest: Control, N addition (150 kg N ha−1 yr−1), P addition (150 kg P ha−1 yr−1), and NP addition (150 kg N ha−1 yr−1 plus 150 kg P ha−1 yr−1). From February 2007 to October 2009, monthly quantification of soil N2O emission was performed using static chamber and gas chromatography techniques. Mean N2O emission was shown to be significantly higher in the old-growth forest (13.9 ± 0.7 µg N2O-N m−2 h−1) than in the mixed (9.9 ± 0.4 µg N2O-N m−2 h−1) or pine (10.8 ± 0.5 µg N2O-N m−2 h−1) forests, with no significant difference between the latter two. N addition significantly increased N2O emission in the old-growth forest but not in the two younger forests. However, both P and NP addition had no significant effect on N2O emission in all three forests, suggesting that P addition alleviated the stimulation of N2O emission by N addition in the old-growth forest. Although P fertilization may alleviate the stimulated effects of atmospheric N deposition on N2O emission in N-rich forests, this effect may only occur under high N deposition and/or long-term P addition, and we suggest future investigations to definitively assess this management strategy and the importance of P in regulating N cycles from regional to global scales.


2016 ◽  
Author(s):  
Geshere Abdisa Gurmesa ◽  
Xiankai Lu ◽  
Per Gundersen ◽  
Yunting Fang ◽  
Qinggong Mao ◽  
...  

Abstract. Natural abundance of 15N (δ15N) in plants and soils can provide integrated information on ecosystem nitrogen (N) cycling, but it has not been well tested in warm and humid sub-tropical forests. In this study, we examined the measurement of δ15N for its ability to assess changes in N cycling due to increased N deposition in an old-growth broadleaved forest and a secondary pine forest in a high N deposition area in southern China. We measured δ15N of inorganic N in input and output fluxes under ambient N deposition, and N concentration (N %) and δ15N of major ecosystem compartments under ambient and after decadal N addition at 50 kg N ha−1 yr−1. Our results showed that the N deposition was δ15N-depleted (−12 ‰) mainly due to high input of depleted NH4&amp;plus;-N. Plant leafs in both forest were also δ15N-depleted (−4 to −6 ‰). The old-growth forest had higher plant and soil N %, and was more 15N-enriched in most ecosystem compartments relative to the pine forest. Nitrogen addition did not significantly affect N % in both forests, indicating that the ecosystem pools are already N-rich. Soil δ15N was not changed significantly by the N addition in both forests. However, the N addition significantly increased the δ15N of plants toward the 15N signature of the added N (~ 0 ‰), indicating incorporation of added N into plants. Thus, plant δ15N was sensitive to ecosystem N input manipulation although N % was unchanged in these N-rich sub-tropical forests. We interpret the depleted δ15N values of plants as an imprint from the high and δ15N-depleted N deposition. The signal from the input (deposition or N addition) may override the enrichment effects of fractionation during the steps of N cycling that are observed in most warm and humid forests. Thus, interpretation of ecosystem δ15N values from high N deposition regions need to include data on the deposition δ15N signal.


2013 ◽  
Vol 10 (8) ◽  
pp. 5367-5379 ◽  
Author(s):  
E. Veldkamp ◽  
B. Koehler ◽  
M. D. Corre

Abstract. It is estimated that tropical forest soils contribute 6.2 Tg yr−1 (28%) to global methane (CH4) uptake, which is large enough to alter CH4 accumulation in the atmosphere if significant changes would occur to this sink. Elevated deposition of inorganic nitrogen (N) to temperate forest ecosystems has been shown to reduce CH4 uptake in forest soils, but almost no information exists from tropical forest soils even though projections show that N deposition will increase substantially in tropical regions. Here we report the results from two long-term, ecosystem-scale experiments in which we assessed the impact of chronic N addition on soil CH4 fluxes from two old-growth forests in Panama: (1) a lowland, moist (2.7 m yr−1 rainfall) forest on clayey Cambisol and Nitisol soils with controls and N-addition plots for 9–12 yr, and (2) a montane, wet (5.5 m yr−1 rainfall) forest on a sandy loam Andosol soil with controls and N-addition plots for 1–4 yr. We measured soil CH4 fluxes for 4 yr (2006–2009) in four replicate plots (40 m × 40 m each) per treatment using vented static chambers (four chambers per plot). CH4 fluxes from the lowland control plots and the montane control plots did not differ from their respective N-addition plots. In the lowland forest, chronic N addition did not lead to inhibition of CH4 uptake; instead, a negative correlation of CH4 fluxes with nitrate (NO3–) concentrations in the mineral soil suggests that increased NO3– levels in N-addition plots had stimulated CH4 consumption and/or reduced CH4 production. In the montane forest, chronic N addition also showed negative correlation of CH4 fluxes with ammonium concentrations in the organic layer, which suggests that CH4 consumption was N limited. We propose the following reasons why such N-stimulated CH4 consumption did not lead to statistically significant CH4 uptake: (1) for the lowland forest, this was caused by limitation of CH4 diffusion from the atmosphere into the clayey soils, particularly during the wet season, as indicated by the strong positive correlations between CH4 fluxes and water-filled pore space (WFPS); (2) for the montane forest, this was caused by the high WFPS in the mineral soil throughout the year, which may not only limit CH4 diffusion from the atmosphere into the soil but also favour CH4 production; and (3) both forest soils showed large spatial and temporal variations of CH4 fluxes. We conclude that in these extremely different tropical forest ecosystems there were indications of N limitation on CH4 uptake. Based on these findings, it is unlikely that elevated N deposition on tropical forest soils will lead to a rapid reduction of CH4 uptake.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Chengming You ◽  
Changhui Peng ◽  
Zhenfeng Xu ◽  
Yang Liu ◽  
Li Zhang ◽  
...  

Abstract Background Changes in foliar nitrogen (N) and phosphorus (P) stoichiometry play important roles in predicting the effects of global change on ecosystem structure and function. However, there is substantial debate on the effects of P addition on foliar N and P stoichiometry, particularly under different levels of N addition. Thus, we conducted a global meta-analysis to investigate how N addition alters the effects of P addition on foliar N and P stoichiometry across different rates and durations of P addition and plant growth types based on more than 1150 observations. Results We found that P addition without N addition increased foliar N concentrations, whereas P addition with N addition had no effect. The positive effects of P addition on foliar P concentrations were greater without N addition than with N addition. Additionally, the effects of P addition on foliar N, P and N:P ratios varied with the rate and duration of P addition. In particular, short-term or low-dose P addition with and without N addition increased foliar N concentration, and the positive effects of short-term or low-dose P addition on foliar P concentrations were greater without N addition than with N addition. The responses of foliar N and P stoichiometry of evergreen plants to P addition were greater without N addition than with N addition. Moreover, regardless of N addition, soil P availability was more effective than P resorption efficiency in predicting the changes in foliar N and P stoichiometry in response to P addition. Conclusions Our results highlight that increasing N deposition might alter the response of foliar N and P stoichiometry to P addition and demonstrate the important effect of the experimental environment on the results. These results advance our understanding of the response of plant nutrient use efficiency to P addition with increasing N deposition.


2016 ◽  
Author(s):  
M. H. Zheng ◽  
T. Zhang ◽  
L. Liu ◽  
W. X. Zhu ◽  
W. Zhang ◽  
...  

Abstract. Nitrogen (N) deposition is generally considered to increase soil nitrous oxide (N2O) emission in N-rich forests. In many tropical forests, however, elevated N deposition has caused soil N enrichment and further phosphorus (P) deficiency, and the interaction of N and P to control soil N2O emission remains poorly understood, particularly in forests with different soil N status. In this study, we examined the effects of N and P additions on soil N2O emission in an N-rich old-growth forest and two N-limited younger forests (a mixed and a pine forest) in southern China, to test the following hypotheses: (1) soil N2O emission is the highest in old-growth forest due to the N-rich soil; (2) N addition increases N2O emission more in the old-growth forest than in the two younger forests; (3) P addition decreases N O emission more in the old-growth forest than in the two younger forests; and (4) P addition alleviates the stimulation of N2O emission by N addition. The following four treatments were established in each forest: Control, N addition (150 kg N ha–1 yr–1), P addition (150 kg P ha–1 yr–1), and NP addition (150 kg N ha–1 yr–1 plus 150 kg P ha–1 yr–1). From February 2007 to October 2009, monthly quantification of soil N2O emission was performed using static chamber and gas chromatography techniques. Mean N2O emission was shown to be significantly higher in the old-growth forest (13.86 ± 0.71 μg N2O-N m–2 h–1) than in the mixed (9.86 ± 0.38 μg N2O-N m–2 h–1) or pine (10.83 ± 0.52 μg N) forests, with no significant difference between the latter two. N addition significantly increased N2O emission in the old-growth forest but not in the two younger forests. However, both P- and NP-addition had no significant effect on N2O emission in all three forests, suggesting that P addition alleviated the stimulation of N2O emission by N addition in the old-growth forest. Although P fertilization may alleviate the stimulated effects of atmospheric N deposition on N O emission in N-rich forests, we suggest future investigations to definitively assess this management strategy and the importance of P in regulating N cycles from regional to global scales.


2013 ◽  
Vol 10 (3) ◽  
pp. 6007-6037 ◽  
Author(s):  
E. Veldkamp ◽  
B. Koehler ◽  
M. D. Corre

Abstract. Tropical forest soils contribute 6.2 Tg yr−1 (28%) to global methane (CH4) uptake, which is large enough to alter CH4 accumulation in the atmosphere if significant changes would occur to this sink. Elevated deposition of inorganic nitrogen (N) to temperate forest ecosystems has been shown to reduce CH4 uptake in forest soils, but almost no information exists from tropical forest soils even though projections show that N deposition will increase substantially in tropical regions. Here we report the results from long-term, ecosystem-scale experiments in which we assessed the impact of chronic N addition on soil CH4 fluxes from two old-growth forests in Panama: (1) a lowland, moist (2.7 m yr−1 rainfall) forest on clayey Cambisol and Nitisol soils with controls and N-addition plots for 9–12 yr, and (2) a montane, wet (5.5 m yr−1 rainfall) forest on a sandy loam Andosol soil with controls and N-addition plots for 1–4 yr. We measured soil CH4 fluxes for 4 yr (2006–2009) in 4 replicate plots (40 m × 40 m each) per treatment using vented static chambers (4 chambers per plot). CH4 fluxes from the lowland control plots and the montane control plots did not differ from their respective N-addition plots. In the lowland forest, chronic N addition did not lead to inhibition of CH4 uptake; instead, a negative correlation of CH4 fluxes with nitrate (NO3−) concentrations in the mineral soil suggests that increased NO3− levels in N-addition plots had stimulated CH4 consumption and/or reduced CH4 production. In the montane forest, chronic N addition also showed negative correlation of CH4 fluxes with ammonium concentrations in the organic layer, which suggests that CH4 consumption was N limited. We propose the following reasons why such N-stimulated CH4 consumption did not lead to statistically significant CH4 uptake: (1) for the lowland forest, this was caused by limitation of CH4 diffusion from the atmosphere into the clayey soils, particularly during the wet season, as indicated by the strong positive correlations between CH4 fluxes and water-filled pore space (WFPS); (2) for the montane forest, this was caused by the high WFPS in the mineral soil throughout the year, which may not only limit CH4 diffusion from the atmosphere into the soil but also favour CH4 production; and (3) both forest soils showed large spatial and temporal variations of CH4 fluxes. We conclude that in these extremely different tropical forest ecosystems there were indications of N limitation on CH4 uptake. Based on these findings, it is unlikely that elevated N deposition on tropical forests will lead to widespread inhibition of CH4 uptake.


2020 ◽  
Vol 8 (11) ◽  
pp. 1828 ◽  
Author(s):  
Zongwei Xia ◽  
Jingyi Yang ◽  
Changpeng Sang ◽  
Xu Wang ◽  
Lifei Sun ◽  
...  

Increased soil nitrogen (N) from atmospheric N deposition could change microbial communities and functions. However, the underlying mechanisms and whether soil phosphorus (P) status are responsible for these changes still have not been well explained. Here, we investigated the effects of N and P additions on soil bacterial and fungal communities and predicted their functional compositions in a temperate forest. We found that N addition significantly decreased soil bacterial diversity in the organic (O) horizon, but tended to increase bacterial diversity in the mineral (A) horizon soil. P addition alone did not significantly change soil bacterial diversity but mitigated the negative effect of N addition on bacterial diversity in the O horizon. Neither N addition nor P addition significantly influenced soil fungal diversity. Changes in soil microbial community composition under N and P additions were mainly due to the shifts in soil pH and NO3− contents. N addition can affect bacterial functional potentials, such as ureolysis, N fixation, respiration, decomposition of organic matter processes, and fungal guilds, such as pathogen, saprotroph, and mycorrhizal fungi, by which more C probably was lost in O horizon soil under increased N deposition. However, P addition can alleviate or switch the effects of increased N deposition on the microbial functional potentials in O horizon soil and may even be a benefit for more C sequestration in A horizon soil. Our results highlight the different responses of microorganisms to N and P additions between O and A horizons and provides an important insight for predicting the changes in forest C storage status under increasing N deposition in the future.


Forests ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1274
Author(s):  
Nowsherwan Zarif ◽  
Attaullah Khan ◽  
Qingcheng Wang

Atmospheric N deposition is increasing worldwide, especially in China, significantly affecting soil health, i.e., increasing soil acidification. The northern region of China is considered to be one of the N deposition points in Asia, ranging from 28.5 to 100.4 N ha−1yr−1. Phosphorus (P) is the limiting factor in the temperate ecosystem and an important factor that makes the ecosystem more susceptible to N-derived acidification. However, it remained poorly understood how the soil acidification process affects soil P availability and base cations in the temperate region to increased N deposition. To address this question, in May 2019, a factorial experiment was conducted under N and P additions with different plantations in Maoershan Experimental Forest Farm, Northeast China, considering species and fertilization as variables. The effective acidity (EA) increased by N and NP fertilizations but was not significantly affected by P fertilization. Similarly, the pH, base saturation percentage (BS%), calcium (Ca2+), and magnesium (Mg2+) were decreased under N addition, while the Al:Ca ratio increased, whereas NaHCO3 inorganic phosphorus (Pi) and NaOH organic phosphorus (Po) significantly decreased under N enrichments. However, NaOH Pi increased in N-enriched plots, while H2O Pi and NaHCO3 Pi increased under the P addition. Thus, the results suggest that the availability of N triggers the P dynamics by increasing the P uptake by trees. The decrease in base cations, Ca2+, and Mg2+ and increase in exchangeable Fe3+ and Al3+ ions are mainly responsible for soil acidification and lead to the depletion of soil nutrients, which, ultimately, affects the vitality and health of forests, while the P addition showed a buffering effect but could not help to mitigate the soil acidity.


Sign in / Sign up

Export Citation Format

Share Document