scholarly journals A synthesis of carbon dioxide emissions from fossil-fuel combustion

2012 ◽  
Vol 9 (1) ◽  
pp. 1299-1376 ◽  
Author(s):  
R. J. Andres ◽  
T. A. Boden ◽  
F.-M. Bréon ◽  
P. Ciais ◽  
S. Davis ◽  
...  

Abstract. This synthesis discusses the emissions of carbon dioxide from fossil-fuel combustion and cement production. While much is known about these emissions, there is still much that is unknown about the details surrounding these emissions. This synthesis explores our knowledge of these emissions in terms of why there is concern about them; how they are calculated; the major global efforts on inventorying them; their global, regional, and national totals at different spatial and temporal scales; how they are distributed on global grids (i.e. maps); how they are transported in models; and the uncertainties associated with these different aspects of the emissions. The magnitude of emissions from the combustion of fossil fuels has been almost continuously increasing with time since fossil fuels were first used by humans. Despite events in some nations specifically designed to reduce emissions, or which have had emissions reduction as a byproduct of other events, global total emissions continue their general increase with time. Global total fossil-fuel carbon dioxide emissions are known to within 10% uncertainty (95% confidence interval). Uncertainty on individual national total fossil-fuel carbon dioxide emissions range from a few percent to more than 50%. The information discussed in this manuscript synthesizes global, regional and national fossil-fuel carbon dioxide emissions, their distributions, their transport, and the associated uncertainties.

2012 ◽  
Vol 9 (5) ◽  
pp. 1845-1871 ◽  
Author(s):  
R. J. Andres ◽  
T. A. Boden ◽  
F.-M. Bréon ◽  
P. Ciais ◽  
S. Davis ◽  
...  

Abstract. This synthesis discusses the emissions of carbon dioxide from fossil-fuel combustion and cement production. While much is known about these emissions, there is still much that is unknown about the details surrounding these emissions. This synthesis explores our knowledge of these emissions in terms of why there is concern about them; how they are calculated; the major global efforts on inventorying them; their global, regional, and national totals at different spatial and temporal scales; how they are distributed on global grids (i.e., maps); how they are transported in models; and the uncertainties associated with these different aspects of the emissions. The magnitude of emissions from the combustion of fossil fuels has been almost continuously increasing with time since fossil fuels were first used by humans. Despite events in some nations specifically designed to reduce emissions, or which have had emissions reduction as a byproduct of other events, global total emissions continue their general increase with time. Global total fossil-fuel carbon dioxide emissions are known to within 10 % uncertainty (95 % confidence interval). Uncertainty on individual national total fossil-fuel carbon dioxide emissions range from a few percent to more than 50 %. This manuscript concludes that carbon dioxide emissions from fossil-fuel combustion continue to increase with time and that while much is known about the overall characteristics of these emissions, much is still to be learned about the detailed characteristics of these emissions.


2017 ◽  
Vol 24 (2) ◽  
pp. 213-221 ◽  
Author(s):  
Artur Pawłowski ◽  
Małgorzata Pawłowska ◽  
Lucjan Pawłowski

Abstract Carbon dioxide fluxes between ecosystems of the Earth are presented. It was shown that intensifying its absorption of terrestrial ecosystems by 3.2% would prove sufficient to neutralize carbon dioxide emissions from the combustion of fossil fuels and cement production. It was shown that Polish forests absorb 84.6 million tons of CO2/year, that is 26% of emissions from fossil fuel combustion and cement production, while agricultural crops absorb 103 million tons of CO2/year. Total carbon dioxide sequestration by forests and agricultural crops amounts to 187.5 million tons of CO2/year, which is tantamount to 59% of emissions from fossil fuel combustion and cement production. Forestation of marginal soils would further increase carbon dioxide absorption in Poland by 20.6 million tons of CO2/year. Moreover, if plants were sown in order to produce green manure - instead of leaving soil fallow - sequestration could still be boosted by another 6.2 million tons of CO2/year.


2021 ◽  
Vol 32 (2) ◽  
pp. 47
Author(s):  
Ahmed S. Hassan ◽  
Jasim H. Kadhum

Carbon dioxide intensity (CI) refers to carbon dioxide emissions from fossil fuel combustion that mainly used for electricity, heat, transport, and other life requirements. The objective of this paper is better to understand CI as an indicator of Global Warming, and compared its behavior with two other variables (total CO2 emissions, and CO2 emissions per capita). The main data sources an available and activity data from Carbon Dioxide Information Analysis Center (CDIAC). Three annual variables used in this study; CI, total CO2 emissions, and CO2 per capita for fossil fuel emissions during long time series from (1971 to 2018).The results of CI shown that the highest value found out at the beginning of the study in 1971 was (7.188 kg/kg oil equivalent), and then decreased till reach to lower value was (1.707 kg/kg oil equivalent) in 1997, after that slowly increased in the last decade near to (3.63 kg/kg oil equivalent). The total CO2 emissions were strongly related to oil prediction. The highest value for total CO2 emissions was (188.1 Mt) in 2018, with Iraqi oil production more than (4.78 million barrel/day). The total CO2 emissions increased by (65. 176%) during the study period.  The total CO2 emissions were inversely proportional to CI.  The level of CO2 emission per capita rate fluctuated around average (3.49 metric tons per capita); the maximum rate was (4.99 metric tons per capita) in 2013.         


Author(s):  
John O'Connor

In this work, a semi-empirical relationship of carbon dioxide emissions with atmospheric CO2 concentrations has been developed that is capable of closely replicating observations from 1751 to 2018. The correlation consists of a superposition of a linear component that may be attributed to the net emission flux from land use changes coupled with a rapidly varying component of the terrestrial sink combined with a fossil-fuel combustion/cement production emissions-based calculation with a single, fixed, scaling parameter determined by the ocean sink coupled with the remaining slowly varying component of the land sink (the fossil-fuel combustion airborne fraction).


Author(s):  
B. I. Dikhanbaev ◽  
◽  
A. B. Dikhanbaev ◽  

The production activity of mankind using high-ash fossil fuels for electricity generation is steadily increasing ash waste and carbon dioxide emissions into the environment. The article proposes a variant of wasteless combustion of Ekibastuz coal in a melting reactor installed under the boiler; it is envisaged to obtain, in addition to steam of energy parameters, a melt suitable for the production of building materials, sublimates of zinc, gallium and germanium, to reduce emissions of "CO2" into the atmosphere and return to the process a part of carbon in "CO2". An energy-saving thermal diagram of a power plant boiler has been developed on the basis of the proposed technology for the reduction of "СО2, Н2О" of reactor waste gases with zinc vapor to "СО, Н2". The resulting excessive hydrogen will be used to displace elemental carbon from "CO". The spent reagent, zinc oxide, after recovering into zinc will be used again in the process. In case of implementation, CO2 emissions into the atmosphere will be cut up to 50%, the expected payback period of the proposed system will be 1.0 - 1.5 years.


Author(s):  
Kelly M. Twomey ◽  
Michael E. Webber

The United States uses approximately 5% of its primary energy and 6% of its electricity to pump, convey, treat, distribute, heat, and recondition water in the US public water supply. Allocating this energy towards water has contributed to a national public water distribution system that is considered among the best in the world, providing its users with a clean and reliable water supply. This water supply, treated to stringent water standards defined by the Environmental Protection Agency’s Safe Drinking Water Act, has been critical to the health and livelihood of United States’ citizens. However, this energy-expenditure comes at an environmental cost, since the majority of water-related energy is derived from burning fossil fuels. Fossil-fuel combustion emits carbon-dioxide, a greenhouse gas that has become of concern in recent years because of its connection to anthropogenic climate change. The amount of carbon-dioxide that is emitted from fossil-fuel combustion is principally a function of the quantity and type of fuel that is burned for energy. This first-order analysis quantifying national water-related carbon dioxide emissions is the second in a series of several analyses by the authors, quantifying the energy and greenhouse emissions embedded in the US public water supply. Results indicate that water withdrawal, conveyance, treatment, distribution, end-use preparation, and wastewater treatment produces approximately 301 million metric tonnes of CO2 emissions annually. This quantity is 5.1% of total US CO2 emissions in 2009, which is approximately equal to emissions from the gasoline consumed by one-quarter of the US passenger fleet in the same year. Considering that the emissions associated with water for industrial, municipal and self-supplied sectors (such as agriculture) were not included in this analysis, the actual quantity of carbon emissions released as a result of water-related activities is likely to be higher. Consequently, identifying efficiency measures and conservation schemes to reduce the amount of water-related energy consumed in the US might be significant in achieving future greenhouse gas emission reduction goals.


Author(s):  
P Freund

Concerns about potentially dangerous changes in climate as a result of rising levels of greenhouse gases in the atmosphere are leading to restrictions on emissions of carbon dioxide (CO2), the principal anthropogenic greenhouse gas. The main source of CO2 emissions is fossil fuel combustion; power generation is the single largest contributor. Coal is widely used for power generation, but it releases approximately twice as much CO2 compared with the use of natural gas for each unit of electricity sent out. Emission reduction could be achieved by increasing the efficiency with which coal is burnt, or by switching to another fuel. These measures can achieve significant reductions in emissions, but, for deep reductions, more substantial changes would be required in the power plant. The technology for capture and storage of CO2 has been recognized in recent years as providing a means of cutting emissions from fossil fuel combustion by at least 80 per cent. Capture and storage is based on technology already in use for other purposes, so there is limited need for development, and the risk of application will be less than is typical for novel energy technologies. Hence, this seems to be a technology that could be deployed relatively rapidly to reduce emissions from fossil fuel fired plant. In this paper, the technology for capture and storage of CO2 will be reviewed, especially the costs and potential capacity for reducing emissions. Some barriers to implementation are identified, and work necessary to overcome them is discussed.


Sign in / Sign up

Export Citation Format

Share Document