scholarly journals Impact of mire reclamation on export potential and characteristics of dissolved carbons in the Sanjiang Plain, Northeast China

2012 ◽  
Vol 9 (5) ◽  
pp. 5347-5371 ◽  
Author(s):  
Y. D. Guo ◽  
C. C. Song ◽  
Y. Z. Lu ◽  
Y. Y. Song ◽  
Z. M. Wan

Abstract. As an important dissolved organic carbon (DOC) reservoir, the mires in the Sanjiang Plain, Northeast China, have been suffering from large scale of reclamation, and thus elevated loss and degradation since the 1960s. This study compares the export dynamics of the dissolved carbons, as well as the chemical characteristics of DOC, in the natural mire, degraded mire and drainage ditches during the growing seasons from 2008 to 2010 with the aim to clarify the final effects of the longterm reclamation on the export dynamics of the dissolved carbons. Results show that the average concentrations of total dissolved carbon (TC) and DOC are much higher in natural mires than that in degraded mire and drainage ditches. The DOC concentration for natural mires, about 35.53 ± 5.15 mg l−1 on average, is nearly 2.39 times of that in degraded mire (14.84 ± 4.21 mg l−1) and 2.77 times of the average value in ditches (12.84 ± 4.49 mg l−1). Similarly, the hydrophobic fraction and SUVA254 of DOC also represent lower values in the degraded mire and ditches, which suggests that mire reclamation has resulted not only in the reduced DOC concentrations but also in the reduced chemical stability. Whereas the inorganic dissolved carbons (DIC) exhibits obvious increased trends in drainage ditches in comparison to natural mires. Analyses of exitation-emission fluorescence spectra reveal that the reclamation has greatly altered the DOC composition with more biological organic substances exporting from the Sanjiang Plain. The presence of protein- and tryptophan-like substances in the ditches indicates there has been extensive agricultural pollution in the surface waters. Changes in the hydrological regime of the mire landscapes by sustained agriculture activities are deemed the prodominant reason, and the trends in the export dynamics of dissolved carbons will keep on if mire reclamation continues in the future.

Author(s):  
Luoman Pu ◽  
Jiuchun Yang ◽  
Lingxue Yu ◽  
Changsheng Xiong ◽  
Fengqin Yan ◽  
...  

Crop potential yields in cropland are the essential reflection of the utilization of cropland resources. The changes of the quantity, quality, and spatial distribution of cropland will directly affect the crop potential yields, so it is very crucial to simulate future cropland distribution and predict crop potential yields to ensure the future food security. In the present study, the Cellular Automata (CA)-Markov model was employed to simulate land-use changes in Northeast China during 2015–2050. Then, the Global Agro-ecological Zones (GAEZ) model was used to predict maize potential yields in Northeast China in 2050, and the spatio-temporal changes of maize potential yields during 2015–2050 were explored. The results were the following. (1) The woodland and grassland decreased by 5.13 million ha and 1.74 million ha respectively in Northeast China from 2015 to 2050, which were mainly converted into unused land. Most of the dryland was converted to paddy field and built-up land. (2) In 2050, the total maize potential production and average potential yield in Northeast China were 218.09 million tonnes and 6880.59 kg/ha. Thirteen prefecture-level cities had maize potential production of more than 7 million tonnes, and 11 cities had maize potential yields of more than 8000 kg/ha. (3) During 2015–2050, the total maize potential production and average yield decreased by around 23 million tonnes and 700 kg/ha in Northeast China, respectively. (4) The maize potential production increased in 15 cities located in the plain areas over the 35 years. The potential yields increased in only nine cities, which were mainly located in the Sanjiang Plain and the southeastern regions. The results highlight the importance of coping with the future land-use changes actively, maintaining the balance of farmland occupation and compensation, improving the cropland quality, and ensuring food security in Northeast China.


2015 ◽  
Vol 75 ◽  
pp. 16-23 ◽  
Author(s):  
Xiaoyan Zhu ◽  
Changchun Song ◽  
Christopher Martin Swarzenski ◽  
Yuedong Guo ◽  
Xinhou Zhang ◽  
...  

2022 ◽  
Vol 14 (2) ◽  
pp. 273
Author(s):  
Mengyao Li ◽  
Rui Zhang ◽  
Hongxia Luo ◽  
Songwei Gu ◽  
Zili Qin

In recent years, the scale of rural land transfer has gradually expanded, and the phenomenon of non-grain-oriented cultivated land has emerged. Obtaining crop planting information is of the utmost importance to guaranteeing national food security; however, the acquisition of the spatial distribution of crops in large-scale areas often has the disadvantages of excessive calculation and low accuracy. Therefore, the IO-Growth method, which takes the growth stage every 10 days as the index and combines the spectral features of crops to refine the effective interval of conventional wavebands for object-oriented classification, was proposed. The results were as follows: (1) the IO-Growth method obtained classification results with an overall accuracy and F1 score of 0.92, and both values increased by 6.98% compared to the method applied without growth stages; (2) the IO-Growth method reduced 288 features to only 5 features, namely Sentinel-2: Red Edge1, normalized difference vegetation index, Red, short-wave infrared2, and Aerosols, on the 261st to 270th days, which greatly improved the utilization rate of the wavebands; (3) the rise of geographic data processing platforms makes it simple to complete computations with massive data in a short time. The results showed that the IO-Growth method is suitable for large-scale vegetation mapping.


2015 ◽  
Vol 10 (1) ◽  
pp. 49-62 ◽  
Author(s):  
Cui Jin ◽  
Xiangming Xiao ◽  
Jinwei Dong ◽  
Yuanwei Qin ◽  
Zongming Wang

Sign in / Sign up

Export Citation Format

Share Document