scholarly journals Centennial to millennial climate variability in the far northwestern Pacific (off Kamchatka) and its linkage to the East Asian monsoon and North Atlantic from the Last Glacial Maximum to the early Holocene

2017 ◽  
Vol 13 (8) ◽  
pp. 1063-1080 ◽  
Author(s):  
Sergey A. Gorbarenko ◽  
Xuefa Shi ◽  
Galina Yu. Malakhova ◽  
Aleksandr A. Bosin ◽  
Jianjun Zou ◽  
...  

Abstract. High-resolution reconstructions based on productivity proxies and magnetic properties of core LV63-41-2 (off Kamchatka) reveal prevailing centennial productivity/climate variability in the northwestern (NW) Pacific from the Last Glacial Maximum (LGM) to the early Holocene (EH). The age model of the core is established by AMS 14C dating and by projections of AMS 14C data of the nearby core SO-201-12KL through correlation of the productivity proxies and relative paleomagnetic intensity. The resulting sequence of centennial productivity increases/climate warming events in the NW Pacific occurred synchronously with the East Asian summer monsoon (EASM) sub-interstadials during the LGM (four events), Heinrich Event 1 (HE1) (four events), Bølling–Allerød (B/A) warming (four events), and over the EH (four events). Remarkable similarity of the sequence of the NW Pacific increased-productivity events with the EASM sub-interstadials over the LGM-HE1 implies that the Siberian High is a strong and common driver. The comparison with the δ18O record from Antarctica suggests that another mechanism associated with the temperature gradient in the Southern Hemisphere may also be responsible for the EASM/NW Pacific centennial events over the LGM-HE1. During the B/A warming and resumption of the Atlantic Meridional Overturning Circulation (AMOC), clear synchronicity between the NW Pacific, EASM and Greenland sub-interstadials was mainly controlled by changes in the atmospheric circulation. During the EH the linkages between solar forcing, ocean circulation, and climate changes likely control the synchronicity of abrupt climate changes in the NW Pacific and North Atlantic. The sequence of centennial events recorded in this study is a persistent regional feature during the LGM-EH, which may serve as a template in high-resolution paleoceanography and sediment stratigraphy in the NW Pacific.

2016 ◽  
Author(s):  
Sergey A. Gorbarenko ◽  
Xuefa Shi ◽  
Min-Te Chen ◽  
Galina Yu. Malakhova ◽  
Aleksandr A. Bosin ◽  
...  

Abstract. High resolution reconstructions based on productivity proxies and magnetic properties measured from sediment core 41-2 (off Kamchatka), reveal prevailing centennial-millennial productivity/climate variability in the northwestern (NW) Pacific from the Last Glacial Maximum (LGM) to the Early Holocene (EH). The core age model is established by AMS 14C dating using foraminifer shells from the core and by correlating the productivity cycles and relative paleomagnetic intensity records with those of well-dated nearby core, SO-201-12KL. Our results show a pronounced feature of centennial-millennial productivity/climate cycles of the NW Pacific had occurred synchronicity with the summer East Asian Monsoon (EAM) at sub-interstadial scale during the LGM (3 cycles), Heinrich Event 1(3 cycles), and Bølling/Allerød warming (4 cycles), and over the EH (3 cycles). Our comparison of the centennial-millennial variability to the Antarctic EDML (EPICA Dronning Maud Land) ice core suggests a “push” effect of Southern hemisphere temperature gradients on the summer EAM intensifications. Besides the linkages of NW Pacific high productivity and summer EAM, we observed that five low productivity cycles during EH are nearly synchronous with cooling in Greenland, weakening of the summer EAM, and decreases in solar irradiance. We propose that such centennial-millennial productivity/climate variability in the NW Pacific and sequence of sub-stadial/interstadials in the EAM from the LGM to EH are a persistent regional features, synchronous with the Greenland/North Atlantic short-term changes. We speculate that such climate synchronicity was forced also by changes in Atlantic meridional overturning circulation coupled with Intertropical Convergence Zone shifting and the northern westerly jets reorganization.


2016 ◽  
Vol 12 (7) ◽  
pp. 1435-1444 ◽  
Author(s):  
James Shulmeister ◽  
Justine Kemp ◽  
Kathryn E. Fitzsimmons ◽  
Allen Gontz

Abstract. Here we present the results of a multi-proxy investigation – integrating geomorphology, ground-penetrating radar, and luminescence dating – of a high-elevation lunette and beach berm in northern New South Wales, eastern Australia. The lunette occurs on the eastern shore of Little Llangothlin Lagoon and provides evidence for a lake high stand combined with persistent westerly winds at the Last Glacial Maximum (LGM – centring on 21.5 ka) and during the early Holocene (ca. 9 and 6 ka). The reconstructed atmospheric circulation is similar to the present-day conditions, and we infer no significant changes in circulation at those times, as compared to the present day. Our results suggest that the Southern Hemisphere westerlies were minimally displaced in this sector of Australasia during the latter part of the last ice age. Our observations also support evidence for a more positive water balance at the LGM and early Holocene in this part of the Australian sub-tropics.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
J. Yu ◽  
L. Menviel ◽  
Z. D. Jin ◽  
D. J. R. Thornalley ◽  
G. L. Foster ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document