Supplementary material to "Juniper tree-ring data from the Kuramenian Mountains (Republic of Tajikistan), reveals changing summer drought signals in western Central Asia"

Author(s):  
Feng Chen ◽  
Tongwen Zhang ◽  
Andrea Seim ◽  
Shulong Yu ◽  
Ruibo Zhang ◽  
...  
Forests ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 505 ◽  
Author(s):  
Feng Chen ◽  
Tongwen Zhang ◽  
Andrea Seim ◽  
Shulong Yu ◽  
Ruibo Zhang ◽  
...  

Coniferous forests cover the mountains in many parts of Central Asia and provide large potentials for dendroclimatic studies of past climate variability. However, to date, only a few tree-ring based climate reconstructions exist from this region. Here, we present a regional tree-ring chronology from the moisture-sensitive Zeravshan juniper (Juniperus seravschanica Kom.) from the Kuramin Range (Tajikistan) in western Central Asia, which is used to reveal past summer drought variability from 1650 to 2015 Common Era (CE). The chronology accounts for 40.5% of the variance of the June–July self-calibrating Palmer Drought Severity Index (scPDSI) during the instrumental period (1901 to 2012). Seven dry periods, including 1659–1696, 1705–1722, 1731–1741, 1758–1790, 1800–1842, 1860–1875, and 1931–1987, and five wet periods, including 1742–1752, 1843–1859, 1876–1913, 1921–1930, and 1988–2015, were identified. Good agreements between drought records from western and eastern Central Asia suggest that the PDSI records retain common drought signals and capture the regional dry/wet periods of Central Asia. Moreover, the spectral analysis indicates the existence of centennial (128 years), decadal (24.3 and 11.4 years), and interannual (8.0, 3.6, 2.9, and 2.0 years) cycles, which may be linked with climate forces, such as solar activity and El Niño-Southern Oscillation (ENSO). The analysis between the scPDSI reconstruction and large-scale atmospheric circulations during the reconstructed extreme dry and wet years can provide information about the linkages of extremes in our scPDSI record with the large-scale ocean–atmosphere–land circulation systems.


2018 ◽  
Author(s):  
Feng Chen ◽  
Tongwen Zhang ◽  
Andrea Seim ◽  
Shulong Yu ◽  
Ruibo Zhang ◽  
...  

Abstract. Coniferous forests cover the mountains in many parts of central Asia and provide large potentials for dendroclimatic studies of past climate variability. However, to date, only a few tree-ring based climate reconstructions exist from this region. Here we present a regional tree-ring chronology from moisture-sensitive Juniperus seravschanica from the Kuramenian Mountains (Republic of Tajikistan), which is used to reveal past summer drought variability in western Central Asia. The chronology accounts for 40.5 % of the variance of the June–July self-calibrating Palmer Drought Severity Index (scPDSI) during the instrumental period (1901 to 2012). Seven dry periods including 1659–1696, 1705–1722, 1731–1741, 1758–1790, 1800–1842, 1860–1875 and 1931–1987, and five wet periods of 1742–1752, 1843–1859, 1876–1913, 1921–1930 and 1988–2015 were identified. Good agreements between drought records from western and eastern Central Asia suggest that the PDSI records retain common drought signals and captures the regional dry/wet periods of Central Asia. Moreover, the wavelet analysis indicates the existence of centennial (100–150 years), decadal (50–60, 24.4 and 11.4 years) and interannual (8.0 and 2.0-3.5 years) cycles, which may linked with climate forcings, such as solar activity and ENSO. The analysis between the scPDSI reconstruction and large-scale atmospheric circulations during the reconstructed extreme dry and wet years can provide information about the linkages of extremes in our scPDSI record with the Asian summer monsoon activity.


2018 ◽  
Vol 91 (1) ◽  
pp. 81-95 ◽  
Author(s):  
Magdalena Opała-Owczarek ◽  
Tadeusz Niedźwiedź

AbstractWe developed a 1108 yr chronology of tree-ring widths, based on 64 Himalayan pencil juniper (Juniperus semiglobosa Regel) trees, for the Pamir-Alay Mountains, central Asia. Dendroclimatological analysis demonstrates that precipitation has significant effects on tree growth in the semiarid mountainous area of northwestern Tajikistan located on the edge of the great midlatitude Karakum and Kyzylkum deserts. The highest level of linear correlation (r=0.67) is observed between tree growth and seasonalised winter (previous December–February) precipitation. Our studies also show that moisture (precipitation/Palmer Drought Severity Index) from the previous June to the current September was the dominant climatic factor accounting for interannual variations in tree-ring width, suggesting that this should be considered in climate reconstruction. Using the transfer function method, we reconstructed the region’s drought history over the period AD 908–2015. The results of this moisture reconstruction showed that the most recent millennium was characterised by series of dry and wet stages. The driest periods occurred before 1000, 1200–1250, and at the end of the eighteenth century and beginning of the nineteenth century. The wettest conditions existed in 1650–1700 and after 1990.


2017 ◽  
Vol 13 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Nesibe Köse ◽  
H. Tuncay Güner ◽  
Grant L. Harley ◽  
Joel Guiot

Abstract. The meteorological observational period in Turkey, which starts ca. 1930 CE, is too short for understanding long-term climatic variability. Tree rings have been used intensively as proxy records to understand summer precipitation history of the region, primarily because they have a dominant precipitation signal. Yet, the historical context of temperature variability is unclear. Here, we used higher-order principle components of a network of 23 tree-ring chronologies to provide a high-resolution spring (March–April) temperature reconstruction over Turkey during the period 1800–2002. The reconstruction model accounted for 67 % (Adj. R2 =  0.64, p < 0.0001) of the instrumental temperature variance over the full calibration period (1930–2002). The reconstruction is punctuated by a temperature increase during the 20th century; yet extreme cold and warm events during the 19th century seem to eclipse conditions during the 20th century. We found significant correlations between our March–April spring temperature reconstruction and existing gridded spring temperature reconstructions for Europe over Turkey and southeastern Europe. Moreover, the precipitation signal obtained from the tree-ring network (first principle component) showed highly significant correlations with gridded summer drought index reconstruction over Turkey and Mediterranean countries. Our results showed that, beside the dominant precipitation signal, a temperature signal can be extracted from tree-ring series and they can be useful proxies in reconstructing past temperature variability.


2020 ◽  
Author(s):  
Jina Jeong ◽  
Jonathan Barichivich ◽  
Philippe Peylin ◽  
Vanessa Haverd ◽  
Matthew J. McGrath ◽  
...  

2014 ◽  
Vol 41 (1) ◽  
pp. 92-103 ◽  
Author(s):  
Kristina Sohar ◽  
Samuli Helama ◽  
Alar Läänelaid ◽  
Juha Raisio ◽  
Heikki Tuomenvirta

Abstract We investigated the decline of a pedunculate oak (Quercus robur L.) forest growing on shallow soil at the northern distributional limit of the species in southern Finland, using the dendroclimatic approach. About 200-year-old trees in three vigour classes — healthy, declining and dead — were sampled in 2008. Annual tree-ring, earlywood and latewood widths were measured and chronologies were established. The tree-ring data were correlated with monthly and seasonal climate data. Radial increment of oaks was positively related to the June and July precipitations. This was expressed especially in total ring width and latewood width, whereas the earlywood was more influenced by the warmer winter and spring. Furthermore, the correlation between the current year earlywood width and the preceding year latewood width was higher than between the earlywood and latewood of the same year. The analyses showed that the dead oaks and part of the declining oaks had ceased growing during 2005–2007 after a decadelong summer drought series. This indicates a time lag in the oak dieback. The radial growth of the declining and the dead oaks had dropped already since the 1990s, while the healthy oaks had better longterm growth and higher adaptive capacity to climate variation.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2139
Author(s):  
Paul H. Hutton ◽  
David M. Meko ◽  
Sujoy B. Roy

This work presents updated reconstructions of watershed runoff to San Francisco Estuary from tree-ring data to AD 903, coupled with models relating runoff to freshwater flow to the estuary and salinity intrusion. We characterize pre-development freshwater flow and salinity conditions in the estuary over the past millennium and compare this characterization with contemporary conditions to better understand the magnitude and seasonality of changes over this time. This work shows that the instrumented flow record spans the range of runoff patterns over the past millennium (averaged over 5, 10, 20 and 100 years), and thus serves as a reasonable basis for planning-level evaluations of historical hydrologic conditions in the estuary. Over annual timescales we show that, although median freshwater flow to the estuary has not changed significantly, it has been more variable over the past century compared to pre-development flow conditions. We further show that the contemporary period is generally associated with greater spring salinity intrusion and lesser summer–fall salinity intrusion relative to the pre-development period. Thus, salinity intrusion in summer and fall months was a common occurrence under pre-development conditions and has been moderated in the contemporary period due to the operations of upstream reservoirs, which were designed to hold winter and spring runoff for release in summer and fall. This work also confirms a dramatic decadal-scale hydrologic shift in the watershed from very wet to very dry conditions during the late 19th and early 20th centuries; while not unprecedented, these shifts have been seen only a few times in the past millennium. This shift resulted in an increase in salinity intrusion in the first three decades of the 20th century, as documented through early records. Population growth and extensive watershed modification during this period exacerbated this underlying hydrologic shift. Putting this shift in the context of other anthropogenic drivers is important in understanding the historical response of the estuary and in setting salinity targets for estuarine restoration. By characterizing the long-term behavior of San Francisco Estuary, this work supports decision-making in the State of California related to flow and salinity management for restoration of the estuarine ecosystem.


Radiocarbon ◽  
2004 ◽  
Vol 46 (3) ◽  
pp. 1161-1187 ◽  
Author(s):  
Konrad A Hughen ◽  
John R Southon ◽  
Chanda J H Bertrand ◽  
Brian Frantz ◽  
Paula Zermeño

This paper describes the methods used to develop the Cariaco Basin PL07-58PC marine radiocarbon calibration data set. Background measurements are provided for the period when Cariaco samples were run, as well as revisions leading to the most recent version of the floating varve chronology. The floating Cariaco chronology has been anchored to an updated and expanded Preboreal pine tree-ring data set, with better estimates of uncertainty in the wiggle-match. Pending any further changes to the dendrochronology, these results represent the final Cariaco 58PC calibration data set.


Sign in / Sign up

Export Citation Format

Share Document