scholarly journals A high resolution record of atmospheric carbon dioxide and its stable carbon isotopic composition from the penultimate glacial maximum to the glacial inception

2013 ◽  
Vol 9 (2) ◽  
pp. 2015-2057 ◽  
Author(s):  
R. Schneider ◽  
J. Schmitt ◽  
P. Köhler ◽  
F. Joos ◽  
H. Fischer

Abstract. The reconstruction of the stable carbon isotope evolution in atmospheric CO2 (δ13Catm), as archived in Antarctic ice cores, bears the potential to disentangle the contributions of the different carbon cycle fluxes causing past CO2 variations. Here we present a highly resolved record of δ13Catm before, during and after the Marine Isotope Stage 5.5 (155 000 to 105 000 yr BP). The record was derived with a well established sublimation method using ice from the EPICA Dome C (EDC) and the Talos Dome ice cores in East Antarctica. We find an 0.4‰ offset between the mean δ13Catm level in the Penultimate (~140 000 yr BP) and Last Glacial Maximum (~22 000 yr BP), which can be explained by either (i) changes in the isotopic composition or (ii) intensity of the carbon input fluxes to the combined ocean/atmosphere carbon reservoir or (iii) by long-term peat buildup. Our isotopic data suggest that the carbon cycle evolution along Termination II and the subsequent interglacial was controlled by essentially the same processes as during the last 24 000 yr, but with different phasing and magnitudes. Furthermore, a 5000 yr lag in the CO2 decline relative to EDC temperatures is confirmed during the glacial inception at the end of MIS 5.5 (120 000 yr BP). Based on our isotopic data this lag can be explained by terrestrial carbon release and carbonate compensation.

2013 ◽  
Vol 9 (6) ◽  
pp. 2507-2523 ◽  
Author(s):  
R. Schneider ◽  
J. Schmitt ◽  
P. Köhler ◽  
F. Joos ◽  
H. Fischer

Abstract. The reconstruction of the stable carbon isotope evolution in atmospheric CO2 (δ13Catm), as archived in Antarctic ice cores, bears the potential to disentangle the contributions of the different carbon cycle fluxes causing past CO2 variations. Here we present a new record of δ13Catm before, during and after the Marine Isotope Stage 5.5 (155 000 to 105 000 yr BP). The dataset is archived on the data repository PANGEA® (www.pangea.de) under 10.1594/PANGAEA.817041. The record was derived with a well established sublimation method using ice from the EPICA Dome C (EDC) and the Talos Dome ice cores in East Antarctica. We find a 0.4‰ shift to heavier values between the mean δ13Catm level in the Penultimate (~ 140 000 yr BP) and Last Glacial Maximum (~ 22 000 yr BP), which can be explained by either (i) changes in the isotopic composition or (ii) intensity of the carbon input fluxes to the combined ocean/atmosphere carbon reservoir or (iii) by long-term peat buildup. Our isotopic data suggest that the carbon cycle evolution along Termination II and the subsequent interglacial was controlled by essentially the same processes as during the last 24 000 yr, but with different phasing and magnitudes. Furthermore, a 5000 yr lag in the CO2 decline relative to EDC temperatures is confirmed during the glacial inception at the end of MIS5.5 (120 000 yr BP). Based on our isotopic data this lag can be explained by terrestrial carbon release and carbonate compensation.


Sedimentology ◽  
2011 ◽  
Vol 59 (1) ◽  
pp. 319-335 ◽  
Author(s):  
AMANDA M. OEHLERT ◽  
KATHRYN A. LAMB-WOZNIAK ◽  
QUINN B. DEVLIN ◽  
GRETA J. MACKENZIE ◽  
JOHN J. G. REIJMER ◽  
...  

Radiocarbon ◽  
2017 ◽  
Vol 59 (2) ◽  
pp. 373-381
Author(s):  
Chi-Hwan Kim ◽  
Jang Hoon Lee ◽  
Jin Kang ◽  
Sujin Song ◽  
Myung-ho Yun ◽  
...  

AbstractStable carbon isotope ratios were measured on the alpha-cellulose in tree rings of a pine tree (Pinus densiflora) from Yeongwol, Korea. We developed an annual-resolution δ13C series (1835–1905) by correcting the measured data for changes in δ13C of air to minimize non-climatic influences. To investigate the climatic signal in the δ13C series, we performed correlation analysis between δ13C and the Cheugugi climate data. The Cheugugi precipitation data were first recorded by King Sejong (1397–1450) of the Joseon Dynasty. However, the longest set of precipitation data available is the one collected in Seoul (1776–1907). Although many studies support the reliability of the Cheugugi data, no previous studies have investigated the potential of the δ13C signal in tree rings as paleoclimate proxy using the Cheugugi data. Recent precipitation trends in Yeongwol are quite similar to that of Seoul, and we found significant correlations between the Cheugugi data and the δ13C series. We suggest further studies to replicate these results and confirm whether comparing δ13C variations in tree rings and Cheugugi data is a useful method of investigating the potential of the δ13C signal as a paleoclimate proxy in or near the Korean peninsula.


2019 ◽  
Vol 531 ◽  
pp. 109100 ◽  
Author(s):  
Zhenzhu Wan ◽  
Thomas J. Algeo ◽  
Patricia G. Gensel ◽  
Stephen E. Scheckler ◽  
William E. Stein ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document