Zeitliche Variation der Größenverteilungen stratosphärischer Aerosole von 2002 bis 2005 mit SAGE III-M3M

2021 ◽  
Author(s):  
Felix Wrana ◽  
Terry Deshler ◽  
Ulrike Niemeier ◽  
Larry Thomason ◽  
Christian von Savigny

<p>Wir stellen den zeitlichen Verlauf von Größenverteilungsparametern stratosphärischer Aerosole im Zeitraum von 2002 bis 2005 basierend auf den Messungen des Stratospheric Aerosol and Gas Experiment (SAGE) III on Mетеор-3M (M3M) vor. Die Okkultationsmessungen von SAGE III-M3M decken in der Nordhemisphäre etwa einen Bereich zwischen 40°N und 80°N und in der Südhemisphäre zwischen 30°S und 60°S ab.</p> <p>Die Retrievalmethode, welche in Wrana et al. (2021, Atm. Meas. Tech.) ausführlich beschrieben wurde, macht sich die spektrale Abhängigkeit der im SAGE III-M3M-Datensatz gelieferten Extinktionskoeffizienten zunutze um den Medianradius und die Verteilungsbreite einer monomodalen Lognormalverteilung zu bestimmen. Durch die Verwendung von drei Wellenlängenkanälen des breiten von SAGE III-M3M abgedeckten spektralen Bereiches ist das gleichzeitige Retrieval beider Parameter möglich. Basierend auf den Ergebnissen wurden weitere Parameter, wie der effektive Radius und die Anzahldichte, bestimmt.</p> <p>Wir zeigen im Vortrag die im Datensatz zu beobachtende jahreszeitliche Variation der Größenverteilungsparameter in der nördlichen und südlichen Hemisphäre. Des Weiteren diskutieren wir das mögliche Auftreten von polaren Stratosphärenwolken (PSC), sowie die Manam-Eruption im Jahr 2004 als mögliche Ursache einer Verringerung der mittleren Größe der stratosphärischen Aerosole in den von SAGE III-M3M beobachteten mittleren Breiten beider Hemisphären in 2005. Zur Validierung zeigen wir außerdem einen Vergleich der Größenverteilungsparameter unseres Datensatzes mit Kollokationen von OPC-Messungen der Universität Wyoming in Kiruna, Schweden.</p>

Tellus ◽  
1974 ◽  
Vol 26 (1-2) ◽  
pp. 222-234 ◽  
Author(s):  
A. W. Castleman Jr. ◽  
H. R. Munkelwitz ◽  
B. Manowitz

2021 ◽  
Vol 164 (3-4) ◽  
Author(s):  
Wake Smith ◽  
Claire Henly

AbstractIn this paper, we seek to ground discussions of the governance of stratospheric aerosol injection research in recent literature about the field including an updated understanding of the technology’s deployment logistics and scale, pattern of effects, and research pathways. Relying upon this literature, we evaluate several common reservations regarding the governance of pre-deployment research and testing including covert deployment, technological lock-in, weaponization, slippery slope, and the blurry line between research and deployment. We conclude that these reservations are no longer supported by literature. However, we do not argue that there is no reason for concern. Instead, we enumerate alternative bases for caution about research into stratospheric aerosol injection which are supported by an up-to-date understanding of the literature. We conclude that in order to establish the correct degree and type of governance for stratospheric aerosol injection research, the research community must focus its attention on these well-grounded reservations. However, while these reservations are supported and warrant further attention, we conclude that none currently justifies restrictive governance of early-stage stratospheric aerosol injection research.


Atmosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1035
Author(s):  
Kenneth Christian ◽  
John Yorks ◽  
Sampa Das

Recent fire seasons have featured volcanic-sized injections of smoke aerosols into the stratosphere where they persist for many months. Unfortunately, the aging and transport of these aerosols are not well understood. Using space-based lidar, the vertical and spatial propagation of these aerosols can be tracked and inferences can be made as to their size and shape. In this study, space-based CATS and CALIOP lidar were used to track the evolution of the stratospheric aerosol plumes resulting from the 2019–2020 Australian bushfire and 2017 Pacific Northwest pyrocumulonimbus events and were compared to two volcanic events: Calbuco (2015) and Puyehue (2011). The pyrocumulonimbus and volcanic aerosol plumes evolved distinctly, with pyrocumulonimbus plumes rising upwards of 10 km after injection to altitudes of 30 km or more, compared to small to modest altitude increases in the volcanic plumes. We also show that layer-integrated depolarization ratios in these large pyrocumulonimbus plumes have a strong altitude dependence with more irregularly shaped particles in the higher altitude plumes, unlike the volcanic events studied.


2019 ◽  
Vol 12 (9) ◽  
pp. 3863-3887 ◽  
Author(s):  
Aryeh Feinberg ◽  
Timofei Sukhodolov ◽  
Bei-Ping Luo ◽  
Eugene Rozanov ◽  
Lenny H. E. Winkel ◽  
...  

Abstract. SOCOL-AERv1 was developed as an aerosol–chemistry–climate model to study the stratospheric sulfur cycle and its influence on climate and the ozone layer. It includes a sectional aerosol model that tracks the sulfate particle size distribution in 40 size bins, between 0.39 nm and 3.2 µm. Sheng et al. (2015) showed that SOCOL-AERv1 successfully matched observable quantities related to stratospheric aerosol. In the meantime, SOCOL-AER has undergone significant improvements and more observational datasets have become available. In producing SOCOL-AERv2 we have implemented several updates to the model: adding interactive deposition schemes, improving the sulfate mass and particle number conservation, and expanding the tropospheric chemistry scheme. We compare the two versions of the model with background stratospheric sulfate aerosol observations, stratospheric aerosol evolution after Pinatubo, and ground-based sulfur deposition networks. SOCOL-AERv2 shows similar levels of agreement as SOCOL-AERv1 with satellite-measured extinctions and in situ optical particle counter (OPC) balloon flights. The volcanically quiescent total stratospheric aerosol burden simulated in SOCOL-AERv2 has increased from 109 Gg of sulfur (S) to 160 Gg S, matching the newly available satellite estimate of 165 Gg S. However, SOCOL-AERv2 simulates too high cross-tropopause transport of tropospheric SO2 and/or sulfate aerosol, leading to an overestimation of lower stratospheric aerosol. Due to the current lack of upper tropospheric SO2 measurements and the neglect of organic aerosol in the model, the lower stratospheric bias of SOCOL-AERv2 was not further improved. Model performance under volcanically perturbed conditions has also undergone some changes, resulting in a slightly shorter volcanic aerosol lifetime after the Pinatubo eruption. With the improved deposition schemes of SOCOL-AERv2, simulated sulfur wet deposition fluxes are within a factor of 2 of measured deposition fluxes at 78 % of the measurement stations globally, an agreement which is on par with previous model intercomparison studies. Because of these improvements, SOCOL-AERv2 will be better suited to studying changes in atmospheric sulfur deposition due to variations in climate and emissions.


2015 ◽  
Vol 15 (2) ◽  
pp. 829-843 ◽  
Author(s):  
T. Sakazaki ◽  
M. Shiotani ◽  
M. Suzuki ◽  
D. Kinnison ◽  
J. M. Zawodny ◽  
...  

Abstract. This paper contains a comprehensive investigation of the sunset–sunrise difference (SSD, i.e., the sunset-minus-sunrise value) of the ozone mixing ratio in the latitude range of 10° S–10° N. SSD values were determined from solar occultation measurements based on data obtained from the Stratospheric Aerosol and Gas Experiment (SAGE) II, the Halogen Occultation Experiment (HALOE), and the Atmospheric Chemistry Experiment–Fourier transform spectrometer (ACE–FTS). The SSD was negative at altitudes of 20–30 km (−0.1 ppmv at 25 km) and positive at 30–50 km (+0.2 ppmv at 40–45 km) for HALOE and ACE–FTS data. SAGE II data also showed a qualitatively similar result, although the SSD in the upper stratosphere was 2 times larger than those derived from the other data sets. On the basis of an analysis of data from the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) and a nudged chemical transport model (the specified dynamics version of the Whole Atmosphere Community Climate Model: SD–WACCM), we conclude that the SSD can be explained by diurnal variations in the ozone concentration, particularly those caused by vertical transport by the atmospheric tidal winds. All data sets showed significant seasonal variations in the SSD; the SSD in the upper stratosphere is greatest from December through February, while that in the lower stratosphere reaches a maximum twice: during the periods March–April and September–October. Based on an analysis of SD–WACCM results, we found that these seasonal variations follow those associated with the tidal vertical winds.


1997 ◽  
Vol 102 (D3) ◽  
pp. 3611-3616 ◽  
Author(s):  
L. W. Thomason ◽  
G. S. Kent ◽  
C. R. Trepte ◽  
L. R. Poole

Author(s):  
Zhihua Zhang ◽  
Andy Jones ◽  
M. James C. Crabbe

Purpose Currently, negotiation on global carbon emissions reduction is very difficult owing to lack of international willingness. In response, geoengineering (climate engineering) strategies are proposed to artificially cool the planet. Meanwhile, as the harbor around one-third of all described marine species, coral reefs are the most sensitive ecosystem on the planet to climate change. However, until now, there is no quantitative assessment on the impacts of geoengineering on coral reefs. This study aims to model the impacts of stratospheric aerosol geoengineering on coral reefs. Design/methodology/approach The HadGEM2-ES climate model is used to model and evaluate the impacts of stratospheric aerosol geoengineering on coral reefs. Findings This study shows that (1) stratospheric aerosol geoengineering could significantly mitigate future coral bleaching throughout the Caribbean Sea; (2) Changes in downward solar irradiation, sea level rise and sea surface temperature caused by geoengineering implementation should have very little impacts on coral reefs; (3) Although geoengineering would prolong the return period of future hurricanes, this may still be too short to ensure coral recruitment and survival after hurricane damage. Originality/value This is the first time internationally to quantitatively assess the impacts of geoengineering on coral reefs.


Sign in / Sign up

Export Citation Format

Share Document