scholarly journals Improved tropospheric and stratospheric sulfur cycle in the aerosol–chemistry–climate model SOCOL-AERv2

2019 ◽  
Vol 12 (9) ◽  
pp. 3863-3887 ◽  
Author(s):  
Aryeh Feinberg ◽  
Timofei Sukhodolov ◽  
Bei-Ping Luo ◽  
Eugene Rozanov ◽  
Lenny H. E. Winkel ◽  
...  

Abstract. SOCOL-AERv1 was developed as an aerosol–chemistry–climate model to study the stratospheric sulfur cycle and its influence on climate and the ozone layer. It includes a sectional aerosol model that tracks the sulfate particle size distribution in 40 size bins, between 0.39 nm and 3.2 µm. Sheng et al. (2015) showed that SOCOL-AERv1 successfully matched observable quantities related to stratospheric aerosol. In the meantime, SOCOL-AER has undergone significant improvements and more observational datasets have become available. In producing SOCOL-AERv2 we have implemented several updates to the model: adding interactive deposition schemes, improving the sulfate mass and particle number conservation, and expanding the tropospheric chemistry scheme. We compare the two versions of the model with background stratospheric sulfate aerosol observations, stratospheric aerosol evolution after Pinatubo, and ground-based sulfur deposition networks. SOCOL-AERv2 shows similar levels of agreement as SOCOL-AERv1 with satellite-measured extinctions and in situ optical particle counter (OPC) balloon flights. The volcanically quiescent total stratospheric aerosol burden simulated in SOCOL-AERv2 has increased from 109 Gg of sulfur (S) to 160 Gg S, matching the newly available satellite estimate of 165 Gg S. However, SOCOL-AERv2 simulates too high cross-tropopause transport of tropospheric SO2 and/or sulfate aerosol, leading to an overestimation of lower stratospheric aerosol. Due to the current lack of upper tropospheric SO2 measurements and the neglect of organic aerosol in the model, the lower stratospheric bias of SOCOL-AERv2 was not further improved. Model performance under volcanically perturbed conditions has also undergone some changes, resulting in a slightly shorter volcanic aerosol lifetime after the Pinatubo eruption. With the improved deposition schemes of SOCOL-AERv2, simulated sulfur wet deposition fluxes are within a factor of 2 of measured deposition fluxes at 78 % of the measurement stations globally, an agreement which is on par with previous model intercomparison studies. Because of these improvements, SOCOL-AERv2 will be better suited to studying changes in atmospheric sulfur deposition due to variations in climate and emissions.

2019 ◽  
Author(s):  
Aryeh Feinberg ◽  
Timofei Sukhodolov ◽  
Bei-Ping Luo ◽  
Eugene Rozanov ◽  
Lenny H. E. Winkel ◽  
...  

Abstract. SOCOL-AERv1 was developed as an aerosol-chemistry-climate model to study the stratospheric sulfur cycle and its influence on climate and the ozone layer. It includes a sectional aerosol model that tracks the sulfate particle size distribution in 40 size bins, between 0.39 nm to 3.2 µm. Sheng et al. (2015) showed that SOCOL-AERv1 successfully matched observable quantities related to stratospheric aerosol, including a simulated stratospheric aerosol burden of 109 Gg of sulfur (S), very close to the satellite-derived estimate available in 2015, 112 Gg S. In the meantime, both the satellite retrieval and SOCOL-AER have undergone significant improvements. In producing SOCOL-AERv2 we have implemented several updates to the model: adding interactive deposition schemes, improving the sulfate mass and particle number conservation, and expanding the tropospheric chemistry scheme. We compare the two versions of the model with background stratospheric sulfate aerosol observations, stratospheric aerosol evolution after Pinatubo, and ground-based sulfur deposition networks. SOCOL-AERv2 shows similar levels of agreement as SOCOL-AERv1 with satellite-measured extinctions and in situ optical particle counter (OPC) balloon flights. Also, the volcanically quiescent total stratospheric aerosol burden simulated in SOCOL-AERv2, 160 Gg S, agrees very well with the new satellite estimate of 165 Gg S. However, SOCOL-AERv2 simulates too high cross-tropopause transport of tropospheric SO2 and/or sulfate aerosol, leading to an overestimation of lower stratospheric aerosol. Due to the current lack of upper tropospheric SO2 measurements and the neglect of organic aerosol in the model, the lower stratospheric bias of SOCOL-AERv2 was not further improved. Model performance under volcanically perturbed conditions has also undergone some changes, resulting in a slightly lower shorter volcanic aerosol lifetime after the Pinatubo eruption. With the improved deposition schemes of SOCOL-AERv2, simulated sulfur wet deposition fluxes are within a factor of 2 of measured deposition fluxes at 78 % of the measurement stations globally, an agreement which is on par with previous model intercomparison studies. Because of these improvements, SOCOL-AERv2 will be better suited to studying changes to atmospheric sulfur deposition due to variations in climate and emissions.


2019 ◽  
Vol 19 (7) ◽  
pp. 4877-4897 ◽  
Author(s):  
Sandro Vattioni ◽  
Debra Weisenstein ◽  
David Keith ◽  
Aryeh Feinberg ◽  
Thomas Peter ◽  
...  

Abstract. Stratospheric sulfate geoengineering (SSG) could contribute to avoiding some of the adverse impacts of climate change. We used the SOCOL-AER global aerosol–chemistry–climate model to investigate 21 different SSG scenarios, each with 1.83 Mt S yr−1 injected either in the form of accumulation-mode H2SO4 droplets (AM H2SO4), gas-phase SO2 or as combinations of both. For most scenarios, the sulfur was continuously emitted at an altitude of 50 hPa (≈20 km) in the tropics and subtropics. We assumed emissions to be zonally and latitudinally symmetric around the Equator. The spread of emissions ranged from 3.75∘ S–3.75∘ N to 30∘ S–30∘ N. In the SO2 emission scenarios, continuous production of tiny nucleation-mode particles results in increased coagulation, which together with gaseous H2SO4 condensation, produces coarse-mode particles. These large particles are less effective for backscattering solar radiation and have a shorter stratospheric residence time than AM H2SO4 particles. On average, the stratospheric aerosol burden and corresponding all-sky shortwave radiative forcing for the AM H2SO4 scenarios are about 37 % larger than for the SO2 scenarios. The simulated stratospheric aerosol burdens show a weak dependence on the latitudinal spread of emissions. Emitting at 30∘ N–30∘ S instead of 10∘ N–10∘ S only decreases stratospheric burdens by about 10 %. This is because a decrease in coagulation and the resulting smaller particle size is roughly balanced by faster removal through stratosphere-to-troposphere transport via tropopause folds. Increasing the injection altitude is also ineffective, although it generates a larger stratospheric burden, because enhanced condensation and/or coagulation leads to larger particles, which are less effective scatterers. In the case of gaseous SO2 emissions, limiting the sulfur injections spatially and temporally in the form of point and pulsed emissions reduces the total global annual nucleation, leading to less coagulation and thus smaller particles with increased stratospheric residence times. Pulse or point emissions of AM H2SO4 have the opposite effect: they decrease the stratospheric aerosol burden by increasing coagulation and only slightly decrease clear-sky radiative forcing. This study shows that direct emission of AM H2SO4 results in higher radiative forcing for the same sulfur equivalent mass injection strength than SO2 emissions, and that the sensitivity to different injection strategies varies for different forms of injected sulfur.


2018 ◽  
Vol 11 (7) ◽  
pp. 2633-2647 ◽  
Author(s):  
Timofei Sukhodolov ◽  
Jian-Xiong Sheng ◽  
Aryeh Feinberg ◽  
Bei-Ping Luo ◽  
Thomas Peter ◽  
...  

Abstract. We evaluate how the coupled aerosol–chemistry–climate model SOCOL-AERv1.0 represents the influence of the 1991 eruption of Mt. Pinatubo on stratospheric aerosol properties and atmospheric state. The aerosol module is coupled to the radiative and chemical modules and includes comprehensive sulfur chemistry and microphysics, in which the particle size distribution is represented by 40 size bins with radii spanning from 0.39 nm to 3.2 µm. SOCOL-AER simulations are compared with satellite and in situ measurements of aerosol parameters, temperature reanalyses, and ozone observations. In addition to the reference model configuration, we performed series of sensitivity experiments looking at different processes affecting the aerosol layer. An accurate sedimentation scheme is found to be essential to prevent particles from diffusing too rapidly to high and low altitudes. The aerosol radiative feedback and the use of a nudged quasi-biennial oscillation help to keep aerosol in the tropics and significantly affect the evolution of the stratospheric aerosol burden, which improves the agreement with observed aerosol mass distributions. The inclusion of van der Waals forces in the particle coagulation scheme suggests improvements in particle effective radius, although other parameters (such as aerosol longevity) deteriorate. Modification of the Pinatubo sulfur emission rate also improves some aerosol parameters, while it worsens others compared to observations. Observations themselves are highly uncertain and render it difficult to conclusively judge the necessity of further model reconfiguration. The model revealed problems in reproducing aerosol sizes above 25 km and also in capturing certain features of the ozone response. Besides this, our results show that SOCOL-AER is capable of predicting the most important global-scale atmospheric effects following volcanic eruptions, which is also a prerequisite for an improved understanding of solar geoengineering effects from sulfur injections to the stratosphere.


2021 ◽  
Vol 14 (6) ◽  
pp. 3813-3841
Author(s):  
Phuc T. M. Ha ◽  
Ryoki Matsuda ◽  
Yugo Kanaya ◽  
Fumikazu Taketani ◽  
Kengo Sudo

Abstract. This study uses a chemistry–climate model CHASER (MIROC) to explore the roles of heterogeneous reactions (HRs) in global tropospheric chemistry. Three distinct HRs of N2O5, HO2, and RO2 are considered for surfaces of aerosols and cloud particles. The model simulation is verified with EANET and EMEP stationary observations; R/V Mirai ship-based data; ATom1 aircraft measurements; satellite observations by OMI, ISCCP, and CALIPSO-GOCCP; and reanalysis data JRA55. The heterogeneous chemistry facilitates improvement of model performance with respect to observations for NO2, OH, CO, and O3, especially in the lower troposphere. The calculated effects of heterogeneous reactions cause marked changes in global abundances of O3 (−2.96 %), NOx (−2.19 %), CO (+3.28 %), and global mean CH4 lifetime (+5.91 %). These global effects were contributed mostly by N2O5 uptake onto aerosols in the middle troposphere. At the surface, HO2 uptake gives the largest contributions, with a particularly significant effect in the North Pacific region (−24 % O3, +68 % NOx, +8 % CO, and −70 % OH), mainly attributable to its uptake onto clouds. The RO2 reaction has a small contribution, but its global mean negative effects on O3 and CO are not negligible. In general, the uptakes onto ice crystals and cloud droplets that occur mainly by HO2 and RO2 radicals cause smaller global effects than the aerosol-uptake effects by N2O5 radicals (+1.34 % CH4 lifetime, +1.71 % NOx, −0.56 % O3, +0.63 % CO abundances). Nonlinear responses of tropospheric O3, NOx, and OH to the N2O5 and HO2 uptakes are found in the same modeling framework of this study (R>0.93). Although all HRs showed negative tendencies for OH and O3 levels, the effects of HR(HO2) on the tropospheric abundance of O3 showed a small increment with an increasing loss rate. However, this positive tendency turns to reduction at higher rates (>5 times). Our results demonstrate that the HRs affect not only polluted areas but also remote areas such as the mid-latitude sea boundary layer and upper troposphere. Furthermore, HR(HO2) can bring challenges to pollution reduction efforts because it causes opposite effects between NOx (increase) and surface O3 (decrease).


2021 ◽  
Author(s):  
Thomas Aubry ◽  
Anja Schmidt ◽  
Alix Harrow ◽  
Jeremy Walton ◽  
Jane Mulcahy ◽  
...  

<p>Reconstructions of volcanic aerosol forcing and its climatic impacts are undermined by uncertainties in both the models used to build these reconstructions as well as the proxy and observational records used to constrain those models. Reducing these uncertainties has been a priority and in particular, several modelling groups have developed interactive stratospheric aerosol models. Provided with an initial volcanic injection of sulfur dioxide, these models can interactively simulate the life cycle and optical properties of sulfate aerosols, and their effects on climate. In contrast, most climate models that took part in the Coupled Model Intercomparison Project Phase 5 and 6 (CMIP6) directly prescribe perturbations in atmospheric optical properties associated with an eruption. However, before the satellite era, the volcanic forcing dataset used for CMIP6 mostly relies on a relatively simple aerosol model and a volcanic sulfur inventory derived from ice-cores, both of which have substantial associated uncertainties.</p><p>In this study, we produced a new set of historical simulations using the UK Earth System Model UKESM1, with interactive stratospheric aerosol capability (referred to as interactive runs hereafter) instead of directly prescribing the CMIP6 volcanic forcing dataset as was done for CMIP6 (standard runs, hereafter). We used one of the most recent volcanic sulfur inventories as input for the interactive runs, in which aerosol properties are consistent with the model chemistry, microphysics and atmospheric components. We analyzed how the stratospheric aerosol optical depth, the radiative forcing and the climate response to volcanic eruptions differed between interactive and standard runs, and how these compare to observations and proxy records. In particular, we investigate in detail the differences in the response to the large-magnitude Krakatoa 1883 eruption between the two sets of runs. We also discuss differences for the 1979-2015 period where the forcing data in standard runs is directly constrained from satellite observations. Our results shed new light on uncertainties affecting the reconstruction of past volcanic forcing and highlight some of the benefits and disadvantages of using interactive stratospheric aerosol capabilities instead of a unique prescribed volcanic forcing dataset in CMIP’s historical runs.</p>


2018 ◽  
Author(s):  
Harri Kokkola ◽  
Thomas Kühn ◽  
Anton Laakso ◽  
Tommi Bergman ◽  
Kari E. J. Lehtinen ◽  
...  

Abstract. In this paper, we present the implementation and evaluation of the aerosol microphysics module SALSA2.0 in the framework of the aerosol-chemistry-climate model ECHAM-HAMMOZ. It is an alternative microphysics module to the default modal microphysics scheme M7 in ECHAM-HAMMOZ. The SALSA2.0 implementation is evaluated against the observations of aerosol optical properties, aerosol mass, and size distributions. We also compare the skill of SALSA2.0 in reproducing the observed quantities to the skill of the M7 implementation. The largest differences between SALSA2.0 and M7 are evident over regions where the aerosol size distribution is heavily modified by the microphysical processing of aerosol particles. Such regions are, for example, highly polluted regions and regions strongly affected by biomass burning. In addition, in a simulation of the 1991 Mt Pinatubo eruption in which a stratospheric sulfate plume was formed, the global burden and the effective radii of the stratospheric aerosol are very different in SALSA2.0 and M7. While SALSA2.0 was able to reproduce the observed time evolution of the global burden of sulfate and the effective radii of stratospheric aerosol, M7 strongly overestimates the removal of coarse stratospheric particles and thus underestimates the effective radius of stratospheric aerosol. As the mode widths of M7 have been optimized for the troposphere and were not designed to represent stratospheric aerosol the ability of M7 to simulate the volcano plume was improved by modifying the mode widths decreasing the standard deviations of the accumulation and coarse modes from 1.59 and 2.0, respectively, to 1.2. Overall, SALSA2.0 shows promise in improving the aerosol description of ECHAM-HAMMOZ and can be further improved by implementing methods for aerosol processes that are more suitable for the sectional method, e.g size dependent emissions for aerosol species and size resolved wet deposition.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Aryeh Feinberg ◽  
Andrea Stenke ◽  
Thomas Peter ◽  
Eve-Lyn S. Hinckley ◽  
Charles T. Driscoll ◽  
...  

AbstractAtmospheric deposition is a major source of the nutrients sulfur and selenium to agricultural soils. Air pollution control and cleaner energy production have reduced anthropogenic emissions of sulfur and selenium, which has led to lower atmospheric deposition fluxes of these elements. Here, we use a global aerosol-chemistry-climate model to map recent (2005–2009) sulfur and selenium deposition, and project future (2095–2099) changes under two socioeconomic scenarios. Across the Northern Hemisphere, we find substantially decreased deposition to agricultural soils, by 70 to 90% for sulfur and by 55 to 80% for selenium. Recent trends in sulfur and selenium concentrations in USA streams suggest that catchment mass balances of these elements are already changing due to the declining atmospheric supply. Sustainable fertilizer management strategies will need to be developed to offset the decrease in atmospheric nutrient supply and ensure future food security and nutrition, while avoiding consequences for downstream aquatic ecosystems.


2018 ◽  
Author(s):  
Sandro Vattioni ◽  
Debra Weisenstein ◽  
David Keith ◽  
Aryeh Feinberg ◽  
Thomas Peter ◽  
...  

Abstract. Stratospheric sulfate geoengineering (SSG) could contribute to avoiding some of the adverse impacts of climate change. We used the global 3D-aerosol-chemistry-climate model, SOCOL-AER, to investigate 21 different SSG scenarios, each with 1.83 Mt S yr−1 injected either in the form of accumulation-mode-H2SO4 droplets (AM-H2SO4), gas-phase SO2, or as combinations of both. For most scenarios, the sulfur was continuously emitted at 50 hPa (≈ 20 km) altitude in the tropics and subtropics, zonally and latitudinally symmetric about the equator (ranging from ±3.75° to ±30°). In the SO2 emission scenarios, continuous production of tiny nucleation mode particles results in increased coagulation, which together with condensation produces larger coarse mode particles. These larger particles are less effective for backscattering solar radiation and sedimentation out of the stratosphere is faster. On average, AM-H2SO4 injection increases stratospheric aerosol residence times by 32 % and stratospheric aerosol burdens 37–41 % when comparing to SO2 injection. The modelled all-sky (clear-sky) short-wave radiative forcing for AM-H2SO4 injection scenarios is up to 17–70 % (44 %–57 %) larger than is the case for SO2. Aerosol burdens have a surprisingly week dependence on the latitudinal spread of emissions with emission in the stratospheric surf zone (> 15° N–15° S) decreasing burdens by only about 10 %. This is because the faster removal through stratosphere-to-troposphere transport via tropopause folds found when injection is spread farther from the equator is roughly balanced by a decrease in coagulation. Increasing injection altitude is also surprisingly ineffective because the increase in burden is compensated by an increase in large aerosols due to increased condensation. Increasing the local SO2 flux in the injection region by pulse or point emissions reduces the total global annual nucleation. Coagulation is also reduced due to the interruption of the continuous flow of freshly formed particles. The net effect of pulse or point emission of SO2 is to increase stratospheric aerosol residence time and radiative forcing. Pulse or point emissions of AM-H2SO4 has the opposite effect—decreasing stratospheric aerosol burden and radiative forcing by increasing coagulation. In summary, this study corroborates previous studies with uncoupled aerosol and radiation modules, suggesting that, compared to SO2 injection, the direct emission of AM-H2SO4 results in more radiative forcing for the same sulfur equivalent mass injection strength and that sensitivities to different injection strategies may vary for different forms of injected sulfur.


Sign in / Sign up

Export Citation Format

Share Document