scholarly journals A composite <sup>10</sup>Be, IR-50 and <sup>14</sup>C chronology of the pre-Last Glacial Maximum (LGM) full ice extent of the western Patagonian Ice Sheet on the Isla de Chiloé, south Chile (42° S)

2021 ◽  
Vol 70 (1) ◽  
pp. 105-128
Author(s):  
Juan-Luis García ◽  
Christopher Lüthgens ◽  
Rodrigo M. Vega ◽  
Ángel Rodés ◽  
Andrew S. Hein ◽  
...  

Abstract. Unanswered questions about the glacier and climate history preceding the global Last Glacial Maximum (LGM) in the southern temperate latitudes remain. The Marine Isotope Stage (MIS) 3 is normally understood as a global interstadial period; nonetheless its climate was punctuated by conspicuous variability, and its signature has not been resolved beyond the polar realms. In this paper, we compile a 10Be depth profile, single grain infrared (IR) stimulated luminescence dating and 14C samples to derive a new glacier record for the principal outwash plain complex, deposited by the western Patagonian Ice Sheet (PIS) during the last glacial period (Llanquihue Glaciation) on the Isla de Chiloé, southern Chile (42∘ S). In this region, the Golfo de Corcovado Ice Lobe left a distinct geomorphic and stratigraphic imprint, suitable for reconstructing former ice dynamics and timing of past climate change. Our data indicate that maximum glaciation occurred by 57.8±4.7 ka without reaching the Pacific Ocean coast. Ice readavanced and buttressed against the eastern side of the Cordillera de la Costa again by 26.0±2.9 ka. Our data further support the notion of a large ice extent during parts of the MIS 3 in Patagonia and New Zealand but appear to contradict near contemporaneous interstadial evidence in the southern midlatitudes, including Chiloé. We propose that the PIS expanded to its full-glacial Llanquihue moraines, recording a rapid response of southern mountain glaciers to the millennial-scale climate stadials that punctuated the MIS 3 at the poles and elsewhere.

2000 ◽  
Vol 46 (153) ◽  
pp. 311-325 ◽  
Author(s):  
Paul M. Cutler ◽  
Douglas R. MacAyeal ◽  
David M. Mickelson ◽  
Byron R. Parizek ◽  
Patrick M. Colgan

AbstractPermafrost existed around and under marginal parts of the southern Laurentide ice sheet during the Last Glacial Maximum. The presence of permafrost was important in determining the extent, form and dynamics of ice lobes and the landforms they produced because of influences on resistance to basal motion and subglacial hydrology. We develop a two-dimensional time-dependent model of permafrost and glacier-ice dynamics along a flowline to examine: (i) the extent to which permafrost survives under an advancing ice lobe and how it influences landform development and hydrology, and (ii) the influence of permafrost on ice motion and surface profile. The model is applied to the Green Bay lobe, which terminated near Madison, Wisconsin, during the Last Glacial Maximum. Simulations of ice advance over permafrost indicate that the bed upstream of the ice-sheet margin was frozen for 60–200 km at the glacial maximum. Permafrost remained for centuries to a few thousand years under advancing ice, and penetrated sufficiently deep (tens of meters) into the underlying aquifer that drainage of basal meltwater became inefficient, likely resulting in water storage beneath the glacier. Our results highlight the influence of permafrost on subglacial conditions, even though uncertainties in boundary conditions such as climate exist.


2018 ◽  
Vol 12 (10) ◽  
pp. 3265-3285 ◽  
Author(s):  
Julien Seguinot ◽  
Susan Ivy-Ochs ◽  
Guillaume Jouvet ◽  
Matthias Huss ◽  
Martin Funk ◽  
...  

Abstract. The European Alps, the cradle of pioneering glacial studies, are one of the regions where geological markers of past glaciations are most abundant and well-studied. Such conditions make the region ideal for testing numerical glacier models based on simplified ice flow physics against field-based reconstructions and vice versa. Here, we use the Parallel Ice Sheet Model (PISM) to model the entire last glacial cycle (120–0 ka) in the Alps, using horizontal resolutions of 2 and 1 km. Climate forcing is derived using two sources: present-day climate data from WorldClim and the ERA-Interim reanalysis; time-dependent temperature offsets from multiple palaeo-climate proxies. Among the latter, only the European Project for Ice Coring in Antarctica (EPICA) ice core record yields glaciation during marine oxygen isotope stages 4 (69–62 ka) and 2 (34–18 ka). This is spatially and temporally consistent with the geological reconstructions, while the other records used result in excessive early glacial cycle ice cover and a late Last Glacial Maximum. Despite the low variability of this Antarctic-based climate forcing, our simulation depicts a highly dynamic ice sheet, showing that Alpine glaciers may have advanced many times over the foreland during the last glacial cycle. Ice flow patterns during peak glaciation are largely governed by subglacial topography but include occasional transfluences through the mountain passes. Modelled maximum ice surface is on average 861 m higher than observed trimline elevations in the upper Rhône Valley, yet our simulation predicts little erosion at high elevation due to cold-based ice. Finally, despite the uniform climate forcing, differencesin glacier catchment hypsometry produce a time-transgressive Last Glacial Maximum advance, with some glaciers reaching their modelled maximum extent as early as 27 ka and others as late as 21 ka.


2021 ◽  
Author(s):  
Fabrizio Antonioli ◽  
Lucio Calcagnile ◽  
Luigi Ferranti ◽  
Giuseppe Mastronuzzi ◽  
Carmelo Monaco ◽  
...  

&lt;p&gt;Estimates of global ice volume during MIS 3 (60-29 ka) can be constrained between -25 and -87 m (Shackleton, 2000; Waelbroeck et al., 2002; Clark et al., 2009; Hughes et al., 2013; Grant et al., 2014). As regards the maximum altitude reached during this period there are few observed data for a comparison between the global curves and the variations due to different rheostay of the mantle in coastal areas. Uncertainties on the rheostatic behaviour near- or far-fields from the ice bulk during cold period, make it very difficult to estimate the local sea level during MIS 3. Several factors make investigations of&amp;#160; MIS 3 sea level difficult: i) the areas where suitable coastal sediments formed are currently submerged at depths of few tens of meters below present sea level; ii) the preservation of geomorphic features and sedimentary records is limited due to the erosion occurred during the Last Glacial Maximum (LGM) with sea level at depth of -130m, followed by marine transgression that determined &amp;#160;the development of ravinement surfaces).&lt;/p&gt;&lt;p&gt;Few data were observed worldwide, especially when tectonics or GIA in the near field leads to uplifts. Our research aims to point out what has been published globally and in the Mediterranean, but, above all, to illustrate the sections of new outcrops in Cannitello (Calabria, Italy) where we have found and dated fossiliferous marine pocket beaches deposited on uplifted bed metamorphic rock. Radiocarbon ages of marine shells (about 43 kyrs cal BP) indicate that these outcrops (presently at 28 and 30 meters above sea level) belong to MIS 3.1. Based on some considerations regarding the altitude of MIS 3.1 highstand, the correction for altitude with the local vertical tectonic movements and GIA of the Cannitello outcrops allows us to revise the eustatic altitude of this highstand. This is consistent with the recent findings (Gowan et al., 2020), which are based on a novel ice sheet modelling technique.&lt;/p&gt;&lt;p&gt;Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., Mitrovica, J.X., Hostetler, S.W., McCabe, A.M., 2009. The Last Glacial Maximum. Science 325, 710&amp;#8211;714. doi:10.1126/science.1172873&lt;/p&gt;&lt;p&gt;Gowan, E.J., Zhang, X., Khosravi, S., Rovere, A., Stocchi, P., Hughes, A. C., Gyllencreutz, R., Mangerud, J., Svendsen, J. I., Lohmann, G. (in print): Global ice sheet reconstruction for the past 80000 years. PANGEA, Earth &amp; Environmental Science https://doi.org/10.1594/PANGAEA.905800.&lt;/p&gt;&lt;p&gt;Grant, K.M., Rohling, E.J., Ramsey, C.B., Cheng, H., Edwards, R.L., Florindo, F., Heslop, D., Marra, F., Roberts, A.P., Tamisiea, M.E., Williams, F., 2014. Sea-level variability over five glacial cycles. Nature Communications 5, 5076. doi:10.1038/ncomms6076&lt;/p&gt;&lt;p&gt;Hughes, P.D., Gibbard, P.L., Ehlers, J., 2013. Timing of glaciation during the last glacial cycle: evaluating the concept of a global &amp;#8216;Last Glacial Maximum&amp;#8217; (LGM). Earth-Science Reviews 125, 171&amp;#8211;198. doi:10.1016/j.earscirev.2013.07.003&lt;/p&gt;&lt;p&gt;Shackleton, N.J., 2000. The 100,000-Year Ice-Age Cycle Identified and Found to Lag Temperature, Carbon Dioxide, and Orbital Eccentricity. Science 289, 1897&amp;#8211;1902. doi:10.1126/science.289.5486.1897&lt;/p&gt;&lt;p&gt;Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J.C., McManus, J.F., Lambeck, K., Balbon, E., Labracherie, M., 2002. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quaternary Science Reviews, EPILOG 21, 295&amp;#8211;305. doi:10.1016/S0277-3791(01)00101-9&lt;/p&gt;


2001 ◽  
Vol 31 (1-4) ◽  
pp. 407-425 ◽  
Author(s):  
Juha Pekka Lunkka ◽  
Matti Saarnisto ◽  
Valeri Gey ◽  
Igor Demidov ◽  
Vera Kiselova

2016 ◽  
Vol 12 (7) ◽  
pp. 1435-1444 ◽  
Author(s):  
James Shulmeister ◽  
Justine Kemp ◽  
Kathryn E. Fitzsimmons ◽  
Allen Gontz

Abstract. Here we present the results of a multi-proxy investigation – integrating geomorphology, ground-penetrating radar, and luminescence dating – of a high-elevation lunette and beach berm in northern New South Wales, eastern Australia. The lunette occurs on the eastern shore of Little Llangothlin Lagoon and provides evidence for a lake high stand combined with persistent westerly winds at the Last Glacial Maximum (LGM – centring on 21.5 ka) and during the early Holocene (ca. 9 and 6 ka). The reconstructed atmospheric circulation is similar to the present-day conditions, and we infer no significant changes in circulation at those times, as compared to the present day. Our results suggest that the Southern Hemisphere westerlies were minimally displaced in this sector of Australasia during the latter part of the last ice age. Our observations also support evidence for a more positive water balance at the LGM and early Holocene in this part of the Australian sub-tropics.


2021 ◽  
Author(s):  
◽  
Sanne M Maas

<p>Sediment Cores collected from the shallow sub-sea floor beneath the Ross Ice Shelf at Coulman High have been analysed using sedimentological techniques to constrain the retreat history of the Last Glacial Maximum (LGM) ice sheet in the Ross Embayment, and to determine when the modern-day calving line location of the Ross Ice Shelf was established. A characteristic vertical succession of facies was identified in these cores, that can be linked to ice sheet and ice shelf extent in the Ross Embayment. The base of this succession consists of unconsolidated, clast rich muddy diamicts, and is interpreted to be deposited subglacially or in a grounding line proximal environment on account of a distinct provenance in the clast content which can only be attributed to subglacial transport from the Byrd Glacier 400 km to the south of the drill site. This is overlain by a mud with abundant clasts, similar in character to a granulated facies that has been documented previously in the Ross Sea, and is interpreted as being a characteristic grounding line lift-o facies in a sub-ice shelf setting. These glacial proximal facies pass upward into a mud, which comprises three distinctive units. i) Muds with sub-mm scale laminae resulting from traction currents occurring near the grounding line in a sub-ice shelf environment overlain by, ii) muds with sub-mm scale laminae and elevated biogenic content (diatoms and foraminifera) and sand/gravel clasts, interpreted as being deposited in open water conditions, passing up into a iii) bioturbated mud, interpreted as being deposited in sub-ice shelf environment, proximal to the calving line. The uppermost facies consists of a 20 cm thick diatom ooze with abundant clasts and pervasive bioturbation, indicative of a condensed section deposited during periodically open marine conditions. During post-LGM retreat of the ice sheet margin in western Ross Sea, and prior to the first open marine conditions at Coulman High, it is hypothesized that the grounding and calving line were in relative close proximity to each other. As the calving line became "pinned" in the Ross Island region, the grounding line likely continued its retreat toward its present day location. New corrected radiocarbon ages on the foraminifera shells in the interval of laminated muds with clasts, provide some of the first inorganic ages from the Ross Sea, and strengthen inferences from previous studies, that the first open marine conditions in the vicinity of Ross Island were 7,600 14C yr BP. While retreat of the calving line south of its present day position is implied during this period of mid-Holocene warmth prior to its re-advance, at present it is not possible to constrain the magnitude of retreat or attribute this to climate change rather than normal calving dynamics.</p>


Sign in / Sign up

Export Citation Format

Share Document