scholarly journals Modeling relevant factors and covariates of carbon stock changes in peatlands using a hierarchical linear mixed modeling approach

Author(s):  
Kilian Walz ◽  
Kenneth A Byrne ◽  
David Wilson ◽  
Florence Renou-Wilson

<p>While peatlands constitute the largest soil carbon stock in Ireland with 75% of soil carbon stored in an area covering an estimated 20% of the land surface, carbon stocks of peatlands are affected by past and present disturbances related to various land uses. Afforestation, grazing and peat extraction for energy and horticultural use often are major drivers of peatland soil degradation. A comparative assessment of the impact of land disturbance on peatland soil carbon stocks on a national scale has been lacking so far. Current research, funded by the Irish Environmental Protection Agency (EPA), addresses this issue with the goal to fill various gaps related to mapping and modeling changes of soil carbon stock in Irish peatlands. Data from the first nationwide peatland survey forms the basis for this study, in which the influence of different factors and covariates on soil carbon distribution in peatlands is examined. After data exploratory analysis, a mixed linear modeling approach is tested for its suitability to explain peatland soil carbon distribution within the Republic of Ireland. Parameters are identified which are responsible for changes across the country. In addition, model performance to map peat soil carbon stock within a three-dimensional space is evaluated.</p>

2016 ◽  
Vol 9 (11) ◽  
pp. 4169-4183 ◽  
Author(s):  
Aleksi Lehtonen ◽  
Tapio Linkosalo ◽  
Mikko Peltoniemi ◽  
Risto Sievänen ◽  
Raisa Mäkipää ◽  
...  

Abstract. Dynamic soil models are needed for estimating impact of weather and climate change on soil carbon stocks and fluxes. Here, we evaluate performance of Yasso07 and ROMULv models against forest soil carbon stock measurements. More specifically, we ask if litter quantity, litter quality and weather data are sufficient drivers for soil carbon stock estimation. We also test whether inclusion of soil water holding capacity improves reliability of modelled soil carbon stock estimates. Litter input of trees was estimated from stem volume maps provided by the National Forest Inventory, while understorey vegetation was estimated using new biomass models. The litter production rates of trees were based on earlier research, while for understorey biomass they were estimated from measured data. We applied Yasso07 and ROMULv models across Finland and ran those models into steady state; thereafter, measured soil carbon stocks were compared with model estimates. We found that the role of understorey litter input was underestimated when the Yasso07 model was parameterised, especially in northern Finland. We also found that the inclusion of soil water holding capacity in the ROMULv model improved predictions, especially in southern Finland. Our simulations and measurements show that models using only litter quality, litter quantity and weather data underestimate soil carbon stock in southern Finland, and this underestimation is due to omission of the impact of droughts to the decomposition of organic layers. Our results also imply that the ecosystem modelling community and greenhouse gas inventories should improve understorey litter estimation in the northern latitudes.


2020 ◽  
Vol 3 (2) ◽  
pp. 123-134
Author(s):  
Edi Handoyo ◽  
Bintal Amin ◽  
Elizal Elizal

Increasing CO2 concentration in the atmosphere is one of the factor which cause global warming. CO2 sequestration through mangrove forests is believed to be one of the efforts to reduce CO2 in atmosphere. This research was conducted in July 2019, aimed at estimating mangrove biomass, mangrove carbon stocks, soil organic carbon, and CO2 sequestration in mangrove forests in the coastal areas of Sungai Sembilan District, Dumai City, Riau Province. This research was conducted using the line transect plot method. Sampling is done by non destructive sampling by measuring DBH (Diameter at Breast Height) of mangrove trees, and soil sampling is done in a composite manner in each plot.. Mangrove biomass calculations done using allometric equations. Then, biomass is converted to carbon stock and CO2 sequestration, where the percentage value of carbon was 0.47 of biomass. As for the organic soil carbon calculation is done by multiplying the bulk density values, the percentage value of 0.47 and a depth of soil carbon.The results showed that the average estimated amount of mangrove biomass, mangrove carbon stocks, soil carbon stocks and CO2 sequestration were 621.46 tons/ha, 289.22 tons/ha, 1819.31 tons/ha and 1074.99 tons/ha. ANOVA analysis results showed that the amount of mangrove biomass, mangrove carbon stock, soil carbon stock and CO2 sequestration between stations were not significantly different (p> 0.05).


2020 ◽  
Vol 21 (12) ◽  
Author(s):  
Halus Satriawan ◽  
ZAHRUL FUADY ◽  
ERNAWITA ERNAWITA

Abstract. Satriawan H, Fuady Z, Ernawita. 2020. The potential of Asystasia intrusa weed as a cover crop in oil palm plantations. Biodiversitas 21: 5711-5718. Weeds generally found in oil palm plantations, one of which is dominant is Asystasia intrusa. This weed has begun to be used as a cover crop on oil palm land because it is assumed to have a beneficial effect. The purpose of this research is to explore the potential of Asystasia intrusa in growing as a cover crop on oil palm plantations. The experimental arrangement used was split-plot design. Oil palm plan’s ages were used as the main plot, while the spacing plant (Asystasia intrusa) as the subplots. Experiments were done in triplicate. The results showed that Asystasia intrusa has the potential to be used as a cover crop in oil palm plantations, since it meets several requirements, such as quickly covering the land (12 WAP), fast decomposing (30-60 days), tolerance to shade. This was indicated by the growth percentage of 97.56%, containing nutrients N (1.65-1.77%), P (0.29%), and K (4.6-4.97%), as biomass (0.9 t C/ha/year) and soil carbon stocks (39.52-41.16 t/ha/year). The studied weed also has the ability to increase soil carbon stock up to 119%.


2020 ◽  
Vol 66 (No. 2) ◽  
pp. 70-79
Author(s):  
Mohadeseh Ghanbari Motlagh ◽  
Sasan Babaie Kafaky ◽  
Asadollah Mataji ◽  
Reza Akhavan ◽  
Behzad Amraei

Northern forests of Iran are among the most important plant communities in Iran due to their dynamic and diverse vegetation composition and fertile soils. There is little information about carbon stocks of these forests. In the present study, above- and belowground carbon stocks of trees, litter, herbs and soil organic carbon stock at three selected sites of these forests were calculated using random plots and non-destructive sampling. The FAO method was used for carbon estimation of trees and Walkley-Black method was used for soil carbon stock and carbon coefficient was estimated directly. The results showed that both the tree carbon stocks and soil carbon stocks increased from east to west with increasing altitude, showing significant differences. The results also indicate that these forests have a high carbon sequestration potential as a green belt across the northern slopes of the Alborz Mountains, when the contribution of the aboveground section was greater than that  of the belowground section (soil and roots) at all sites.


2012 ◽  
Vol 610-613 ◽  
pp. 3328-3331
Author(s):  
Shao Juan He ◽  
Yong Chang Ye ◽  
Jian Yun Zhu ◽  
Lu Zhang

Three forest stands, i.e., natural secondary broadleaved mixed stand, 3-year-old eucalypt stand and 1-year-old eucalypt stand, were selected for study in Dongguan, south China, for forest carbon accounting and evaluation. The results showed that forest tree carbon stocks for the three stands were 85.6745 t, 17.5570 t, and 6.5469 t for broadleaved mixed stand, 3-year-old eucalypt stand, and 1-year-old eucalypt stand, respectively, while the forest soil carbon stocks for the three forest stands in a descending order were: 3-year-old eucalypt stand (97.0984 t), 1-year-old eucalypt forest stand (96.7272 t), and broadleaved mixed forest (84.6288 t), respectively. Using a carbon tax criterion, we evaluate the monetary benefit of carbon stock for each forest stand, with the broadleaved forest stand having the highest total value. This study suggested that the perennial broadleaved forest stand has significant advantage over 1-year or 3-year-old eucalypt stands in biomass carbon stocks, however, eucalypt stands have great potentials in soil carbon stock due to more organic material return from litter.


Soil Research ◽  
2011 ◽  
Vol 49 (8) ◽  
pp. 680 ◽  
Author(s):  
Karen W. Holmes ◽  
Andrew Wherrett ◽  
Adrian Keating ◽  
Daniel V. Murphy

Estimation of soil organic carbon stocks requires bulk density (BD) measurements. Variability in BD contributes to carbon stock uncertainty, in turn affecting how large a change in stock can be observed over time or space. However, BD is difficult and time-consuming to measure, and sample collection is further complicated by extremely dry field conditions, coarse-textured soils, and high coarse-fragment content, which are common in southern Australia and other semi-arid and Mediterranean-type climates. Two alternatives to reduce BD sampling effort are to take fewer BD samples at a site (i.e. volumetric rings or clod), and to use more time-efficient methods (i.e. gamma–neutron density meter, NDM). We evaluate these options in the context of a soil carbon stock survey in agricultural land in the south-west of Australia. The BD values within a monitoring site measured with conventional and NDM methods were statistically different when assessed using large sample sizes; the measurements diverged where the coarse fraction volume was >20%. However, carbon stocks were equivalent, reflecting the much larger relative variability in carbon percentage, which contributed 84–99% of the uncertainty in carbon stocks compared with <5% from BD. Given the maximum variability measured, soil carbon stock changes in southern Australia should be monitored on a decadal scale.


2013 ◽  
Vol 10 (3) ◽  
pp. 5499-5533 ◽  
Author(s):  
E. D. Assad ◽  
H. S. Pinto ◽  
S. C. Martins ◽  
J. D. Groppo ◽  
P. R. Salgado ◽  
...  

Abstract. In this paper we calculated soil carbon stocks in Brazil using 17 paired sites where soil stocks were determined in native vegetation, pastures and crop-livestock systems (CPS), and in other regional samplings encompassing more than 100 pasture soils, from 6.58° S to 31.53° S, involving three major Brazilian biomes: Cerrado, Atlantic Forest, and the Pampa. The average native vegetation soil carbon stocks at 10 and 30 cm soil depth were equal to approximately 33 and 65 Mg ha−1, respectively. In the paired sites, carbon losses of 7.5 Mg ha−1 and 11.9 Mg ha−1 in CPS systems were observed at 10 cm and 30 cm soil depth averages, respectively. In pasture soils, carbon losses were similar and equal to 8.3 Mg ha−1 and 12.2 Mg ha−1 at 10 cm and 30 cm soil depths, respectively. The average soil δ13C under native vegetation at 10 and 30 cm depth were equal to −25.4‰ and −24.0‰, increasing to −19.6 ‰ and −17.7‰ in CPS, and to −18.9‰, and −18.3‰ in pasture soils, respectively; indicating an increasing contribution of C4 carbon in these agrosystems. In the regional survey of pasture soils, the soil carbon stock at 30 cm was equal to approximately 51 Mg ha−1, with an average δ13C value of −19.6‰. Key controllers of soil carbon stock at pasture sites were sand content and mean annual temperature. Collectively, both could explain approximately half of the variance of soil carbon stocks. When pasture soil carbon stocks were compared with the average soil carbon stocks of native vegetation estimated for Brazilian biomes and soil types by Bernoux et al. (2002) there was a carbon gain of 6.7 Mg ha−1, which is equivalent to a carbon gain of 15% compared to the carbon soil stock of the native vegetation. The findings of this study are consistent with differences found between regional comparisons like our pasture sites and local paired study sites in estimating soil carbon stocks changes due to land use changes.


Forests ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 979
Author(s):  
Natalia Lukina ◽  
Anastasia Kuznetsova ◽  
Elena Tikhonova ◽  
Vadim Smirnov ◽  
Maria Danilova ◽  
...  

Research Highlights: It was found that both tree species and ground vegetation affected soil carbon stock in boreal forests. Carbon stocks in the mineral layers were related negatively to the C/N ratio in the organic horizon and pine proportion in the growing stock volume, and positively to the share of herbaceous plants and the proportion of spruce. Background and Objectives: Existing research showed the effects of tree species on soil carbon stocks in organic horizons, but these effects were less clear in mineral horizons. Little is known about the effects of ground vegetation on soil carbon stock. This study aims to identify associations between the forest vegetation composition and soil carbon stocks in northwestern Russia. Materials and Methods: Research data from 109 pine, spruce and birch forests of different Cajander’s and Sukachev’s types with different functional compositions of ground vegetation at autonomous positions are discussed in this paper. The V-test was used to assess the impact of vegetation on soil carbon stocks. Results: Variations in Carbon stocks in the mineral layers were associated with the soil types and vegetation composition. Carbic Albic Podzols accumulated the least amount of carbon in the mineral profile. Carbon stock in the mineral layers in pine forests was considerably lower than in spruce and birch forests. Spruce forests with the highest share of herbaceous plants were characterised by the highest carbon stocks in the mineral layers, while pine forests with dwarf shrubs and green mosses accumulated more carbon in the organic layers, but carbon stocks in the mineral layers here were the lowest. Conclusions: Differences in soil carbon stocks between and within northern and middle taiga in northwestern Russia were associated not only with soil types but also with the proportions of forest types dominated by different tree species and ground vegetation functional groups.


Author(s):  
Sandro Marcelo Caravina ◽  
Maurel Behling ◽  
Cornélio Alberto Zolin ◽  
Ciro Augusto de Souza Magalhães ◽  
Onã da Silva Freddi ◽  
...  

Abstract: The objective of this work was to evaluate whether balsa wood plantation and its fertilization can improve soil carbon stocks. Total carbon stocks in the soil-biomass system, at 0.0-0.30 m soil depths, were evaluated under three fertilization strategies, after three and seven years, and compared with carbon stocks from native forest and degraded pasture. At the highest fertilization level, balsa wood showed a carbon stock similar to that of the native forest (65.38 Mg ha-1) and, after seven years, it increased carbon stock by 18% in the soil, and by 42% in the soil-biomass system.


2018 ◽  
Author(s):  
Zhun Mao ◽  
Delphine Derrien ◽  
Markus Didion ◽  
Jari Liski ◽  
Thomas Eglin ◽  
...  

Abstract. Facing global changes, modeling and predicting the dynamics of soil carbon stock of forest ecosystems is vital but challenging work. Yasso07 is considered as one of the most promising models for such a purpose. We aim at examining the prediction accuracy of Yasso07 on soil carbon dynamics over the whole French metropolitan territory at a decennial time scale. We used the dataset from 101 RENECOFOR sites network, which encompass most of the French temperate forests. The data include (i) measured yearly litter quantity from aboveground organs part from 1994 to 2008, and soil carbon stocks twice at an interval of ca. 15 years (early 1990s versus around 2010). Using Yasso07, we simulated the stock changes (t C ha−1 yr−1) per site and compared them with the measured ones. We carried out meta-analyses to reveal the variability in litter biochemistry between different tree organs for conifers and broadleaves. We also performed sensitivity analyses to explore Yasso07’s sensitivity to inputs, including litter carbon quality and initial carbon stocks. At the national level, the simulated annual carbon stock changes (ACC, +0.45 ± 0.09 t C ha−1 year−1, mean ± standard error) stayed in the same order of magnitude with the observed ones (+0.34 ± 0.06 t C ha−1 year−1). The correlation between predicted and measured ACC remained weak (R² 


Sign in / Sign up

Export Citation Format

Share Document