A recent slowdown in the decline of CFC-11 concentrations in the upper troposphere

Author(s):  
Patrick Sheese ◽  
Kaley Walker ◽  
Chris Boone ◽  
Laura Saunders ◽  
Sandip Dhomse ◽  
...  

<p>Since 2004, the Atmospheric Chemistry Experiment – Fourier Transform Spectrometer (ACE-FTS) instrument has been measuring concentrations of chlorofluorocarbons (CFCs) in the stratosphere and upper troposphere and is currently the only satellite instrument that measures vertically resolved profiles of CFC‑11. Since CFCs are major ozone depleting substances, monitoring their atmospheric abundances is critical for understanding ozone layer recovery. Recent studies based solely on surface-level measurements have shown strong evidence for new CFC‑11 production, leading to an increase in CFC‑11 emissions over the past decade. In this study, the TOMCAT/SLIMCAT 3-D chemical transport model is used in order to bridge the altitude/geolocation gap between ACE-FTS measurements in the UTLS and surface level measurements. Trends in two different time periods over the ACE-FTS mission, 2004-2012 and 2013-2018, are examined to determine if the recent change in surface level CFC-11 trends is influencing UTLS concentrations. The ACE-FTS measurements show that, below ~10 km, the rate of decrease of global CFC-11 concentrations was slower during 2013-2018 (-1.2 pptv/year) than during 2004-2012 (‑2.0 pptv/year). Similar trends are observed in the model data for the same spatial/temporal regions.</p>

2013 ◽  
Vol 13 (9) ◽  
pp. 23491-23548 ◽  
Author(s):  
A. T. Brown ◽  
M. P. Chipperfield ◽  
S. Dhomse ◽  
C. Boone ◽  
P. F. Bernath

Abstract. We present chlorine budgets calculated between 2004 and 2009 for four latitude bands (70° N–30° N, 30° N–0° N, 0° N–30° S, and 30° S–70° S). The budgets were calculated using ACE-FTS version 3.0 retrievals of the volume mixing ratios (VMRs) of 9 chlorine-containing species: CCl4, CFC-12 (CCl2F2), CFC-11 (CCl3F), COCl2, COClF, HCFC-22 (CHF2Cl), CH3Cl, HCl and ClONO2. These data were supplemented with calculated VMRs from the SLIMCAT 3-D chemical transport model (CFC-113, CFC-114, CFC-115, H-1211, H-1301, HCFC-141b, HCFC-142b, ClO and HOCl). The total chlorine profiles are dominated by chlorofluorocarbons (CFCs) and halons up to 24 km in the tropics and 19 km in the extra-tropics. In this altitude range CFCs and halons account for 58% of the total chlorine VMR. Above this altitude HCl increasingly dominates the total chlorine profile, reaching a maximum of 95% of total chlorine at 54 km. All total chlorine profiles exhibit a positive slope with altitude, suggesting that the total chlorine VMR is now decreasing with time. This conclusion is supported by the time series of the mean stratospheric total chlorine budgets which show mean decreases in total stratospheric chlorine of 0.38 ± 0.03% per year in the Northern Hemisphere extra-tropics, 0.35 ± 0.07% per year in the Northern Hemisphere tropical stratosphere, 0.54 ± 0.16% per year in the Southern Hemisphere tropics and 0.53 ± 0.12% per year in the Southern Hemisphere extra-tropical stratosphere for 2004–2009. Globally stratospheric chlorine is decreasing by 0.46 ± 0.02% per year. Both global warming potential-weighted chlorine and ozone depletion potential-weighted chlorine are decreasing at all latitudes. These results show that the Montreal Protocol has had a significant effect in reducing emissions of both ozone-depleting substances and greenhouse gases.


2011 ◽  
Vol 11 (4) ◽  
pp. 13099-13139 ◽  
Author(s):  
G. González Abad ◽  
N. D. C. Allen ◽  
P. F. Bernath ◽  
C. D. Boone ◽  
S. D. McLeod ◽  
...  

Abstract. Near global upper tropospheric concentrations of carbon monoxide (CO), ethane (C2H6) and ethyne (C2H2) from ACE (Atmospheric Chemistry Experiment) Fourier transform spectrometer on board the Canadian satellite SCISAT-1 are presented and compared with the output from the Chemical Transport Model (CTM) GEOS-Chem. The retrievals of ethane and ethyne from ACE have been improved for this paper by using new sets of microwindows compared with those for previous versions of ACE data. With the improved ethyne retrieval we have been able to produce a near global upper tropospheric distribution of C2H2 from space. Carbon monoxide, ethane and ethyne concentrations retrieved using ACE spectra show the expected seasonality linked to variations in the anthropogenic emissions and destruction rates as well as seasonal biomass burning activity. The GEOS-Chem model was run using the dicarbonyl chemistry suite, an extended chemical mechanism in which ethyne is treated explicitly. Seasonal cycles observed from satellite data are well reproduced by the model output, however the simulated CO concentrations are found to be systematically biased low over the Northern Hemisphere. An average negative global mean bias of 12% and 7% of the model relative to the satellite observations has been found for CO and C2H6 respectively and a positive global mean bias of 1% has been found for C2H2. ACE data are compared for validation purposes with MkIV spectrometer data and Global Tropospheric Experiment (GTE) TRACE-A campaign data showing good agreement with all of them.


2014 ◽  
Vol 14 (11) ◽  
pp. 16043-16083
Author(s):  
T. Sakazaki ◽  
M. Shiotani ◽  
M. Suzuki ◽  
D. Kinnison ◽  
J. M. Zawodny ◽  
...  

Abstract. This paper contains a comprehensive investigation of the sunset–sunrise difference (SSD; i.e., the sunset-minus-sunrise value) of the ozone mixing ratio in the latitude range of 10° S–10° N. SSD values were determined from solar occultation measurements based on data obtained from the Stratospheric Aerosol and Gas Experiment (SAGE) II, the Halogen Occultation Experiment (HALOE), and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS). The SSD was negative at altitudes of 20–30 km (–0.1 ppmv at 25 km) and positive at 30–50 km (+0.2 ppmv at 40–45 km) for HALOE and ACE–FTS data. SAGE II data also showed a qualitatively similar result, although the SSD in the upper stratosphere was two times larger than those derived from the other datasets. On the basis of an analysis of data from the Superconducting Submillimeter Limb Emission Sounder (SMILES), and a nudged chemical-transport model (the Specified Dynamics version of the Whole Atmosphere Community Climate Model: SD–WACCM), we conclude that the SSD can be explained by diurnal variations in the ozone concentration, particularly those caused by vertical transport by the atmospheric tidal winds. All datasets showed significant seasonal variations in the SSD; the SSD in the upper stratosphere is greatest from December through February, while that in the lower stratosphere reaches a maximum twice: during the periods March–April and September–October. Based on an analysis of SD–WACCM results, we found that these seasonal variations follow those associated with the tidal vertical winds.


2015 ◽  
Vol 15 (23) ◽  
pp. 34361-34405 ◽  
Author(s):  
J. J. Harrison ◽  
M. P. Chipperfield ◽  
C. D. Boone ◽  
S. S. Dhomse ◽  
P. F. Bernath ◽  
...  

Abstract. The vast majority of emissions of fluorine-containing molecules are anthropogenic in nature, e.g. chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), and hydrofluorocarbons (HFCs). Many of these fluorine-containing species deplete stratospheric ozone, and are regulated by the Montreal Protocol. Once in the atmosphere they slowly degrade, ultimately leading to the formation of HF, the dominant reservoir of stratospheric fluorine due to its extreme stability. Monitoring the growth of stratospheric HF is therefore an important marker for the success of the Montreal Protocol. We report the comparison of global distributions and trends of HF measured in the Earth's atmosphere by the satellite remote-sensing instruments ACE-FTS (Atmospheric Chemistry Experiment Fourier Transform Spectrometer), which has been recording atmospheric spectra since 2004, and HALOE (HALogen Occultation Experiment), which recorded atmospheric spectra between 1991 and 2005, with the output of SLIMCAT, a state-of-the-art three-dimensional chemical transport model. In general the agreement between observation and model is good, although the ACE-FTS measurements are biased high by ∼ 10 % relative to HALOE. The observed global HF trends reveal a substantial slowing down in the rate of increase of HF since the 1990s: 4.97 ± 0.12 % year-1 (1991–1997; HALOE), 1.12 ± 0.08 % year-1 (1998–2005; HALOE), and 0.52 ± 0.03 % year-1 (2004–2012; ACE-FTS). In comparison, SLIMCAT calculates trends of 4.01, 1.10, and 0.48 % year-1, respectively, for the same periods; the agreement is very good for all but the earlier of the two HALOE periods. Furthermore, the observations reveal variations in the HF trends with latitude and altitude, for example between 2004 and 2012 HF actually decreased in the Southern Hemisphere below ∼ 35 km. SLIMCAT calculations broadly agree with these observations, most notably between 2004 and 2012. Such variations are attributed to variability in stratospheric dynamics over the observation period.


2016 ◽  
Author(s):  
R. J. Pope ◽  
N. A. D. Richards ◽  
M. P. Chipperfield ◽  
D. P. Moore ◽  
S. A. Monks ◽  
...  

Abstract. Peroxyacetyl nitrate (PAN) is an important chemical species in the troposphere as it aids the long-range transport of NOx and subsequent formation of O3 in relatively clean remote regions. Over the past few decades observations from aircraft campaigns and surface sites have been used to better understand the regional distribution of PAN. However, recent measurements made by satellites allow for a global assessment of PAN in the upper troposphere – lower stratosphere (UTLS). In this study, we investigate global PAN distributions from two independent retrieval methodologies, based on measurements from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument, on board ENVISAT from the Institute of Meteorology and Climate Research (IMK), Karlsruhe Institute of Technology and the Department of Physics and Astronomy, University of Leicester (UoL). Retrieving PAN from MIPAS is challenging due to the weak signal in the measurements and contamination from other species. Therefore, we compare the two MIPAS datasets with observations from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), insitu aircraft data and the TOMCAT 3-D chemical transport model. MIPAS shows peak UTLS PAN concentrations over the biomass burning regions (e.g. ranging from 150 to > 200 pptv at 150 hPa) and during the summertime Asian monsoon as enhanced convection aids the vertical transport of PAN from the lower atmosphere. At 150 hPa, we find significant differences between the two MIPAS datasets in the tropics, where IMK PAN concentrations are larger by 50–100 pptv. Comparisons between MIPAS and ACE-FTS show better agreement with the UoL MIPAS PAN concentrations at 200 hPa, but with mixed results above this altitude. TOMCAT generally captures the magnitude and structure of climatological aircraft PAN profiles within the observational variability allowing it to be used to investigate the MIPAS PAN differences. TOMCAT-MIPAS comparisons show that the model is both positively (UoL) and negatively (IMK) biased against the satellite products. These results show that satellite PAN observations are able to detect realistic spatial variations in PAN in the UTLS, but further work is needed to resolve differences in existing retrievals to allow quantitative use of the products.


2019 ◽  
Vol 19 (21) ◽  
pp. 13647-13679 ◽  
Author(s):  
Quentin Errera ◽  
Simon Chabrillat ◽  
Yves Christophe ◽  
Jonas Debosscher ◽  
Daan Hubert ◽  
...  

Abstract. This paper presents a reanalysis of the atmospheric chemical composition from the upper troposphere to the lower mesosphere from August 2004 to December 2017. This reanalysis is produced by the Belgian Assimilation System for Chemical ObsErvations (BASCOE) constrained by the chemical observations from the Microwave Limb Sounder (MLS) on board the Aura satellite. BASCOE is based on the ensemble Kalman filter (EnKF) method and includes a chemical transport model driven by the winds and temperature from the ERA-Interim meteorological reanalysis. The model resolution is 3.75∘ in longitude, 2.5∘ in latitude and 37 vertical levels from the surface to 0.1 hPa with 25 levels above 100 hPa. The outputs are provided every 6 h. This reanalysis is called BRAM2 for BASCOE Reanalysis of Aura MLS, version 2. Vertical profiles of eight species from MLS version 4 are assimilated and are evaluated in this paper: ozone (O3), water vapour (H2O), nitrous oxide (N2O), nitric acid (HNO3), hydrogen chloride (HCl), chlorine oxide (ClO), methyl chloride (CH3Cl) and carbon monoxide (CO). They are evaluated using independent observations from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) and N2O observations from a different MLS radiometer than the one used to deliver the standard product and ozonesondes. The evaluation is carried out in four regions of interest where only selected species are evaluated. These regions are (1) the lower-stratospheric polar vortex where O3, H2O, N2O, HNO3, HCl and ClO are evaluated; (2) the upper-stratospheric–lower-mesospheric polar vortex where H2O, N2O, HNO3 and CO are evaluated; (3) the upper troposphere–lower stratosphere (UTLS) where O3, H2O, CO and CH3Cl are evaluated; and (4) the middle stratosphere where O3, H2O, N2O, HNO3, HCl, ClO and CH3Cl are evaluated. In general BRAM2 reproduces MLS observations within their uncertainties and agrees well with independent observations, with several limitations discussed in this paper (see the summary in Sect. 5.5). In particular, ozone is not assimilated at altitudes above (i.e. pressures lower than) 4 hPa due to a model bias that cannot be corrected by the assimilation. MLS ozone profiles display unphysical oscillations in the tropical UTLS, which are corrected by the assimilation, allowing a good agreement with ozonesondes. Moreover, in the upper troposphere, comparison of BRAM2 with MLS and independent observations suggests a positive bias in MLS O3 and a negative bias in MLS H2O. The reanalysis also reveals a drift in MLS N2O against independent observations, which highlights the potential use of BRAM2 to estimate biases between instruments. BRAM2 is publicly available and will be extended to assimilate MLS observations after 2017.


2008 ◽  
Vol 8 (14) ◽  
pp. 4061-4068 ◽  
Author(s):  
D. Cariolle ◽  
M. J. Evans ◽  
M. P. Chipperfield ◽  
N. Butkovskaya ◽  
A. Kukui ◽  
...  

Abstract. We have studied the impact of the recently observed reaction NO+HO2→HNO3 on atmospheric chemistry. A pressure and temperature-dependent parameterisation of this minor channel of the NO+HO2→NO2+OH reaction has been included in both a 2-D stratosphere-troposphere model and a 3-D tropospheric chemical transport model (CTM). Significant effects on the nitrogen species and hydroxyl radical concentrations are found throughout the troposphere, with the largest percentage changes occurring in the tropical upper troposphere (UT). Including the reaction leads to a reduction in NOx everywhere in the troposphere, with the largest decrease of 25% in the tropical and Southern Hemisphere UT. The tropical UT also has a corresponding large increase in HNO3 of 25%. OH decreases throughout the troposphere with the largest reduction of over 20% in the tropical UT. The mean global decrease in OH is around 13%, which is very large compared to the impact that typical photochemical revisions have on this modelled quantity. This OH decrease leads to an increase in CH4 lifetime of 5%. Due to the impact of decreased NOx on the OH:HO2 partitioning, modelled HO2 actually increases in the tropical UT on including the new reaction. The impact on tropospheric ozone is a decrease in the range 5 to 12%, with the largest impact in the tropics and Southern Hemisphere. Comparison with observations shows that in the region of largest changes, i.e. the tropical UT, the inclusion of the new reaction tends to degrade the model agreement. Elsewhere the model comparisons are not able to critically assess the impact of including this reaction. Only small changes are calculated in the minor species distributions in the stratosphere.


2007 ◽  
Vol 7 (4) ◽  
pp. 12463-12539 ◽  
Author(s):  
R. J. Sica ◽  
M. R. M. Izawa ◽  
K. A. Walker ◽  
C. Boone ◽  
S. V. Petelina ◽  
...  

Abstract. An ensemble of space-borne and ground-based instruments has been used to evaluate the quality of the version 2.2 temperature retrievals from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS). The agreement of ACE-FTS temperatures with other sensors is typically better than 2 K in the stratosphere and upper troposphere and 5 K in the lower mesosphere. There is evidence of a systematic high bias (roughly 3–6 K) in the ACE-FTS temperatures in the mesosphere, and a possible systematic low bias (roughly 2 K) in ACE-FTS temperatures near 23 km. Some ACE-FTS temperature profiles exhibit unphysical oscillations, a problem fixed in preliminary comparisons with temperatures derived using the next version of the ACE-FTS retrieval software. Though these relatively large oscillations in temperature can be on the order of 10 K in the mesosphere, retrieved volume mixing ratio profiles typically vary by less than a percent or so. Statistical comparisons suggest these oscillations occur in about 10% of the retrieved profiles. Analysis from a set of coincident lidar measurements suggests that the random error in ACE-FTS version 2.2 temperatures has a lower limit of about ±2 K.


2008 ◽  
Vol 8 (1) ◽  
pp. 2695-2713 ◽  
Author(s):  
D. Cariolle ◽  
M. J. Evans ◽  
M. P. Chipperfield ◽  
N. Butkovskaya ◽  
A. Kukui ◽  
...  

Abstract. We have studied the impact of the recently established reaction NO+HO2→HNO3 on atmospheric chemistry. A pressure and temperature-dependent parameterisation of this minor channel of the NO+HO2→NO2+OH reaction has been included in both a 2-D stratosphere-troposphere model and a 3-D tropospheric chemical transport model (CTM). Significant effects on the nitrogen species and hydroxyl radical concentrations are found throughout the troposphere, with the largest percentage changes occurring in the tropical upper troposphere (UT). Including the reaction leads to a reduction in NOx everywhere in the troposphere, with the largest decrease of 25% in the tropical and southern hemisphere UT. The tropical UT also has a corresponding large increase in HNO3 of 25%. OH decreases throughout the troposphere with the largest reduction of over 20% in the tropical UT. Mean global decreases in OH are around 13% which leads to a increase in CH4 lifetime of 5%. Due to the impact of decreased NOx on the OH:HO2 partitioning, modelled HO2 actually increases in the tropical UT on including the new reaction. The impact on tropospheric ozone is a decrease in the range 5 to 12%, with the largest impact in the tropics and southern hemisphere. Comparison with observations shows that in the region of largest changes, i.e. the tropical UT, the inclusion of the new reaction tends to degrade the model agreement. Elsewhere the model comparisons are not able to critically assess the impact of including this reaction. Only small changes are calculated in the minor species distributions in the stratosphere.


2016 ◽  
Vol 16 (21) ◽  
pp. 13541-13559 ◽  
Author(s):  
Richard J. Pope ◽  
Nigel A. D. Richards ◽  
Martyn P. Chipperfield ◽  
David P. Moore ◽  
Sarah A. Monks ◽  
...  

Abstract. Peroxyacetyl nitrate (PAN) is an important chemical species in the troposphere as it aids the long-range transport of NOx and subsequent formation of O3 in relatively clean remote regions. Over the past few decades observations from aircraft campaigns and surface sites have been used to better understand the regional distribution of PAN. However, recent measurements made by satellites allow for a global assessment of PAN in the upper troposphere–lower stratosphere (UTLS). In this study, we investigate global PAN distributions from two independent retrieval methodologies, based on measurements from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument, on board Envisat from the Institute of Meteorology and Climate Research (IMK), Karlsruhe Institute of Technology, and the Department of Physics and Astronomy, University of Leicester (UoL). Retrieving PAN from MIPAS is challenging due to the weak signal in the measurements and contamination from other species. Therefore, we compare the two MIPAS datasets with observations from the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS), in situ aircraft data and the 3-D chemical transport model TOMCAT. MIPAS shows peak UTLS PAN concentrations over the biomass burning regions (e.g. ranging from 150 to  >  200 pptv at 150 hPa) and during the summertime Asian monsoon as enhanced convection aids the vertical transport of PAN from the lower atmosphere. At 150 hPa, we find significant differences between the two MIPAS datasets in the tropics, where IMK PAN concentrations are larger by 50–100 pptv. Comparisons between MIPAS and ACE-FTS show better agreement with the UoL MIPAS PAN concentrations at 200 hPa, but with mixed results above this altitude. TOMCAT generally captures the magnitude and structure of climatological aircraft PAN profiles within the observational variability allowing it to be used to investigate the MIPAS PAN differences. TOMCAT–MIPAS comparisons show that the model is both positively (UoL) and negatively (IMK) biased against the satellite products. These results indicate that satellite PAN observations are able to detect realistic spatial variations in PAN in the UTLS, but further work is needed to resolve differences in existing retrievals to allow quantitative use of the products.


Sign in / Sign up

Export Citation Format

Share Document