Size-resolved effective density of submicron particles during autumn in the North China Plain

Author(s):  
Yaqing Zhou ◽  
Nan Ma ◽  
Zhibin Wang ◽  
Linhong Xie ◽  
Baofang Xie ◽  
...  

<p>Effective density is one of the most important physical property of atmospheric aerosols, which is link to particle formation and aging process. Combined characterization of density, chemical composition and source evolution of aerosol is crucial for understanding their interactions and effects on environment and climate. The effective density of sub-micrometer aerosol particles was investigate at a heavily polluted rural site in the North China Plain from 16 October to 1 November 2019. A tandem technique coupling a Centrifugal Particle Mass Analyzer (CPMA) with a differential mobility analyzer (DMA) and a Condensation Particle Counter (CPC) were used to determine the effective density of ambient aerosol particles with selected diameters of 50, 100, 150, 220 and 300 nm. The measured effective density is higher during clean period than pollution period, with average values ranged from 1.13 to 1.36 g/cm<sup>3</sup>, which is lower than the reported values in Shanghai and Beijing. Similar diurnal cycles of effective density are observed for the five diameters, that is, started to increase in the morning and reached a peak in the afternoon around 13:00-16:00, then decreased and remained at a relative low value during the night. Two valleys are found during morning and evening rush hours for particle diameter smaller than 150 nm, which is likely to stem from the higher fresh emissions such as BC, BBOA and HOA. In most cases, measured particle effective density shows a single-modal distribution. But during clean days, bimodal distribution was observed with an extra low-density mode peaking at around 0.5 -1.0 g/cm<sup>3</sup>, which may be attributed to freshly emitted soot particles.</p>

2021 ◽  
Author(s):  
Yaqing Zhou ◽  
Nan Ma ◽  
Zhibin Wang ◽  
Jiangchuan Tao ◽  
Juan Hong ◽  
...  

<p>Effective density is one of the most important physical properties of atmospheric aerosol particles, and is linked to particle formation and aging process. Combined characterization of aerosol density, chemical composition, emission and aging processes may provide crucial information for better understanding their interactions and effects on environment and climate. In autumn of 2019, the effective density of sub-micrometer aerosol particles was measured in-situ at a heavily polluted rural site in the North China Plain (NCP). A tandem technique coupling a Centrifugal Particle Mass Analyzer (CPMA) with a differential mobility analyzer (DMA) and a Condensation Particle Counter (CPC) were used to determine the effective density of ambient aerosol particles with diameters of 50, 100, 150, 220 and 300 nm. The probability distribution of effective density exhibits double peak modes in majority cases, with a higher density mode (main-density) and a lower density mode (sub-density). The existence of sub-density particles normally ascribed to freshly emitted or partial aged black carbon (BC) with non-spherical morphology. The number fraction of sub-density mode varies from 4% to 67%, with mean of 22-27% at five particle sizes. Due to the higher aging degree of larger particles, the main-density exhibits an evident ascending trend with particle size. However, the sub-density decreases as mobility size increases, from 0.89 g/cm<sup>3</sup> at 50 nm to 0.62 g/cm<sup>3</sup> at 300 nm, since larger fresh soot particles usually present a more agglomerated morphology than small particles. A comparison was carried out between the mean effective density at 300 nm and ACSM-derived density using different approximations of BC density. The best agreement is achieved when assuming a BC density of 0.6 g/cm<sup>3</sup>, indicating that BC typically exists as non-spherical particles with fractal-like or porous morphology in the NCP in cold season.</p>


2019 ◽  
Vol 19 (20) ◽  
pp. 12857-12874 ◽  
Author(s):  
Renmin Yuan ◽  
Xiaoye Zhang ◽  
Hao Liu ◽  
Yu Gui ◽  
Bohao Shao ◽  
...  

Abstract. Due to excessive anthropogenic emissions, heavy aerosol pollution episodes (HPEs) often occur during winter in the Beijing–Tianjin–Hebei (BTH) area of the North China Plain. Extensive observational studies have been carried out to understand the causes of HPEs; however, few measurements of vertical aerosol fluxes exist, despite them being the key to understanding vertical aerosol mixing, specifically during weak turbulence stages in HPEs. In the winter of 2016 and the spring of 2017 aerosol vertical mass fluxes were measured by combining large aperture scintillometer (LAS) observations, surface PM2.5 and PM10 mass concentrations, and meteorological observations, including temperature, relative humidity (RH), and visibility, at a rural site in Gucheng (GC), Hebei Province, and an urban site at the Chinese Academy of Meteorological Sciences (CAMS) in Beijing located 100 km to the northeast. These are based on the light propagation theory and surface-layer similarity theory. The near-ground aerosol mass flux was generally lower in winter than in spring and weaker in rural GC than in urban Beijing. This finding provides direct observational evidence for a weakened turbulence intensity and low vertical aerosol fluxes in winter and polluted areas such as GC. The HPEs included a transport stage (TS), an accumulative stage (AS), and a removal stage (RS). During the HPEs from 25 to 31 January 2017, in Beijing, the mean mass flux decreased by 51 % from 0.0049 mg m−2 s−1 in RSs to 0.0024 mg m−2 s−1 in the TSs. During the ASs, the mean mass flux decreased further to 0.00087 mg m−2 s−1, accounting for approximately one-third of the flux in the TSs. A similar reduction from the TSs to ASs was observed in the HPE from 16 to 22 December 2016 in GC. It can be seen that from the TS to the AS, the aerosol vertical turbulent flux decreased, but the aerosol particle concentration within the surface layer increased, and it is inferred that in addition to the contribution of regional transport from upwind areas during the TS, suppression of vertical turbulence mixing confining aerosols to a shallow boundary layer increased accumulation.


2017 ◽  
Vol 164 ◽  
pp. 259-269 ◽  
Author(s):  
Simonas Kecorius ◽  
Nan Ma ◽  
Monique Teich ◽  
Dominik van Pinxteren ◽  
Shenglan Zhang ◽  
...  

2008 ◽  
Vol 8 (21) ◽  
pp. 6355-6363 ◽  
Author(s):  
Y. Wang ◽  
M. B. McElroy ◽  
J. W. Munger ◽  
J. Hao ◽  
H. Ma ◽  
...  

Abstract. Large intra-season differences in mixing ratios of CO and O3 were detected at Miyun, a rural site north of Beijing, in summer 2006. Despite an increase in mean daytime mixing ratio of CO from 500 ppbv in June to 700 ppbv in July, mean daytime O3 dropped from 67 ppbv in June to 50 ppbv in July and August. The observed changes in CO and O3 are attributed to the influence of the summer monsoonal circulation that develops over the North China Plain in July. Photochemical production of O3 is reduced as a consequence of increased cloudiness during July and August, as indicated by the strong negative correlation observed between O3 and satellite observations of cloud optical depth, with cloudiness having little effect on CO. The analysis suggests a strategy for emission controls that could be implemented in an economically efficient manner to minimize the frequency of high levels of O3 during summer in Beijing.


2016 ◽  
Vol 16 (17) ◽  
pp. 10985-11000 ◽  
Author(s):  
Yin Wang ◽  
Zhongming Chen ◽  
Qinqin Wu ◽  
Hao Liang ◽  
Liubin Huang ◽  
...  

Abstract. Measurements of atmospheric peroxides were made during Wangdu Campaign 2014 at Wangdu, a rural site in the North China Plain (NCP) in summer 2014. The predominant peroxides were detected to be hydrogen peroxide (H2O2), methyl hydroperoxide (MHP) and peroxyacetic acid (PAA). The observed H2O2 reached up to 11.3 ppbv, which was the highest value compared with previous observations in China at summer time. A box model simulation based on the Master Chemical Mechanism and constrained by the simultaneous observations of physical parameters and chemical species was performed to explore the chemical budget of atmospheric peroxides. Photochemical oxidation of alkenes was found to be the major secondary formation pathway of atmospheric peroxides, while contributions from alkanes and aromatics were of minor importance. The comparison of modeled and measured peroxide concentrations revealed an underestimation during biomass burning events and an overestimation on haze days, which were ascribed to the direct production of peroxides from biomass burning and the heterogeneous uptake of peroxides by aerosols, respectively. The strengths of the primary emissions from biomass burning were on the same order of the known secondary production rates of atmospheric peroxides during the biomass burning events. The heterogeneous process on aerosol particles was suggested to be the predominant sink for atmospheric peroxides. The atmospheric lifetime of peroxides on haze days in summer in the NCP was about 2–3 h, which is in good agreement with the laboratory studies. Further comprehensive investigations are necessary to better understand the impact of biomass burning and heterogeneous uptake on the concentration of peroxides in the atmosphere.


2020 ◽  
Author(s):  
Shaowen Zhu ◽  
Nan Ma ◽  
Xihao Pan ◽  
Wenlin Dong ◽  
Jiangchuan Tao ◽  
...  

<p>Black carbon (BC) is the most important light absorbing component in the atmosphere and has significant impacts on the climate, environment and public health. Its effects depend not only on its spatial-temporal distribution, but also on its physico-chemical characteristics. Mixing state is one of the most important properties of BC and strongly determines its hygroscopicity and radiative properties. During an intensive field campaign conducted in the North China Plain in winter 2018, mass-based mixing state of BC-containing particles were online measured with a Centrifugal Particle Mass Analyzer and Single Particle Soot Photometer (CPMA-SP2) tandem system. This technique directly provides the mass ratio of non-refractory coating matter to BC core (M<sub>R</sub>) in individual particles and does not require to assume the density, morphology and refractive index of BC core and coating in data retrieval, therefore has lower uncertainly compared with leading-edge fit technique. In our measurement, the mean number fraction of uncoated (M<sub>R</sub>=0), thin coated (0<M<sub>R</sub><3) and thick coated (M<sub>R</sub>≥3) BC-containing particle during the campaign were respectively ~10%, ~35% and ~55%, indicating the strong aging process of BC-containing particle in the North China Plain. The median value of M<sub>R</sub> was much higher in polluted days than clean days, for example, the median value of M<sub>R</sub> with a particle mass of 8.56 fg (~220 nm in diameter) for polluted and clean days were ~3.2 and ~1.6, respectively. The mixing state of BC-containing particles obtained by different methods were also compared and evaluated.</p>


Sign in / Sign up

Export Citation Format

Share Document