C-dots as a novel silica-based fluorescent nanoparticle tracer to investigate plant hydraulics

Author(s):  
Kanishka Singh ◽  
Benjamin Hafner ◽  
James Knighton ◽  
M. Todd Walter ◽  
Taryn Bauerle

<p>Forest cover exerts a significant control on the partitioning of precipitation between evapotranspiration and surface runoff. Thus, understanding how plants take up and transpire water in forested catchments is essential to predict flooding potential and hydrologic cycling. A growing literature underscores the importance of integrating whole-plant hydraulics, including such processes as the spatial variability of root distribution and the temporally dynamic nature of root water uptake by depth in understanding the relationship between changes in vegetation and hydrology. The analysis of stable isotopes of water (<sup>18</sup>O and <sup>2</sup>H) sourced from soils and plant tissue has enabled the estimation of tree root water uptake depths and water use strategies. Despite the general acceptance of stable water isotopic data to estimate plant hydraulic dynamics, this methodology imposes assumptions that may produce spurious results. For example, end member mixing analysis neglects time-delays during tree-water storage. Also, it is likely that hydraulic redistribution processes of plants, which transport water across soil depths and both into and out of plant tissue, modify δ<sup>18</sup>O and δ<sup>2</sup>H; the isotopic signature of a collected sample may thus reflect a history of transport and exposure to fractionating processes not accounted for in analysis. We tested the feasibility of C-dots, core-shell silica polyethylene-glycol coated fluorescent nano-particles (5.1 nm diameter) in 20 µmol/l solution with H<sub>2</sub>O labeled with a near-infrared fluorophore, cyanine 5.5 (excitation maximum of 646 nm, emission maximum of 662 nm), as an alternative to stable water isotopes in the investigation of plant hydraulics. We examined the absorption and transport of C-dots through soil, as well as roots and aerial structures of Eastern hemlock (Tsuga canadensis), Eastern white pine (Pinus strobus), and white spruce (Picea glauca) saplings (n = 12 each) via an IVIS-200 luminescence in-situ imaging system. We compared the fluid mechanics, residence times and mixing schemes of C-dots with <sup>2</sup>H-labeled water during transport within these plant species to establish the nanoparticles as a viable alternative through a split-root hydraulic redistribution experiment under moderate and severe drought conditions. We present a residence-time distribution to elucidate the mixing scheme of C-dot solution and calibration curves to aid future studies. This research is the premier assessment of this nanoparticle as an alternative tracer to stable water isotopes, and as such may yield insights for broader applications.</p>

2020 ◽  
Author(s):  
Martin Bouda ◽  
Mathieu Javaux

<p>Earth system models struggle to accurately predict soil-root water flows, especially under drying or heterogeneous soil moisture conditions, resulting in inaccurate description of water limitation of terrestrial fluxes. Recent descriptions of plant hydraulics address this by applying Ohm’s law analogues to the soil-plant-atmosphere hydraulic continuum.</p><p>While adequate for stems, this formulation linearises soil-root and within-root resistances by assumption, neglecting the nonlinearity of pressure gradients in absorbing roots. The resulting discretisation error is known to depend strongly on model spatial resolution. At coarse resolution, substantial errors arise in a form depending on the assumed configuration of resistances. In simulations of a drought at the Wind River Crane (WRC) flux site, a parallel Ohm model based on the rooting profile overpredicted hydraulic redistribution, while a series model overpredicted uptake in shallow layers at the expense of deep ones.</p><p>A conceptual alternative is to upscale exact solutions to the hyperbolic differential equation that describes root water uptake, by solving for the mean root water potential in each soil subdomain. Upscaled solutions show that multiple soil water potentials affect pressure gradients in each root segment, producing the nonlinearities absent in Ohm models. This upscaled model gave better predictions of WRC drought data and was significantly less prone to over-fitting than the two Ohm models, with more robust predictions beyond calibration conditions.</p><p>Analysis reveals classes of root systems of differing architectural complexity that yield a common upscaled model. In numerical experiments, using a simple upscaled model in situations of increasing complexity (e.g., adding individual plants), resulted in bounded errors that decreased asymptotically with increased complexity. The approach is thus a viable candidate for upscaling the effects of heterogenous soil moisture distributions on root water uptake.</p>


2020 ◽  
Author(s):  
Kathrin Kuehnhammer ◽  
Joost van Haren ◽  
Angelika Kuebert ◽  
Maren Dubbert ◽  
Nemiah Ladd ◽  
...  

<p><em>Online</em> (or: <em>in situ</em>) methods for measuring soil and plant water isotopes have been identified as an innovative and crucial step to address recently identified issues in studying water uptake using stable isotope techniques.</p><p>During a controlled three month drought and rewetting experiment at the Biosphere 2 (B2) enclosed rainforest, a recently developed online method for measuring stem water isotopes (<em>Marshall et al., 2019</em>), namely ‘stem borehole equilibration’, was combined with <em>online</em> monitoring of soil water isotopes and transpired water isotopes as well as sap flow and stem water storage. This enabled us to study root water uptake depths of different tree species and dynamic changes during the dry down and rewetting. After two months of drought, the system was supplied with isotopically labelled water (deuterated water) from down below via a pipe system spanning across the complete B2 rainforest in order to identify deep water uptake of the rainforest trees and hydraulic redistribution.</p><p>Results show that – as expected – all monitored trees responded to the drought by changing their root water uptake towards deeper soil depths while sap flow rates of most trees decreased. When rewetting the system, deep water uptake from the base of B2 (between 2.5m and 4m soil depth) was identified in all large, mature trees (Clitoria faichildiana, Hibiscus tilliaceus, Hura crepitans, Pachira aquatica). No deep water uptake was found in the smaller trees (mainly Pachira aquatica). Furthermore, stem water storage was notably different between species and affected their adaptation to drought and response to rewetting. The labelled water was also identified in the transpired water more than one month after re-starting rainfall at B2.  However, no hydraulic redistribution was identified.</p><p>The holistic approach for monitoring the interactions of soils and plants provides inevitable insights into the adaptation of (enclosed) rainforests under drought and might have implications for natural rainforests. In particular, the capability of large trees to develop deep roots and the role of stem water storage are important elements for adaptation to climatic changes and need to be studied further under ‘real’ conditions.</p><p><strong>References</strong></p><p>Marshall, J.D., Cuntz, M., Beyer, M., Dubbert, M., Kühnhammer, K., 2019. Borehole equilibration: testing a new method to monitor the isotopic composition of tree xylem water in situ. Front. Plant Sci.</p>


2021 ◽  
Author(s):  
Jessica Landgraf ◽  
Dörthe Tetzlaff ◽  
Maren Dubbert ◽  
David Dubbert ◽  
Aaron Smith ◽  
...  

Abstract. Root water uptake is an important critical zone process, as plants can tap various water sources and transpire these back into the atmosphere. However, knowledge about the spatial and temporal dynamics of root water uptake and associated water sources at both high temporal resolution (e.g. daily) and over longer time periods (e.g. seasonal) is still limited. We used cavity ring-down spectroscopy (CRDS) for continuous in situ monitoring of stable water isotopes in soil and xylem water for two riparian willow (Salix alba) trees over the growing season (May to October) of 2020. This was complemented by isotopic sampling of local precipitation, groundwater and stream water in order to help constrain the potential sources of root water uptake. A local flux tower, together with sap flow monitoring, soil moisture measurements and dendrometry were also used to provide the hydroclimatic and ecohydrological contexts for in situ isotope monitoring. In addition, bulk samples of soil water and xylem water were collected to corroborate the continuous in situ data. The monitoring period was characterised by frequent inputs of precipitation, interspersed by warm dry periods which resulted in variable moisture storage in the upper 20 cm of the soil profile and dynamic isotope signatures. This variability was greatly damped in 40 cm and the isotopic composition of the sub-soil and groundwater was relatively stable. The isotopic composition and dynamics of xylem water was very similar to that of the upper soil and analysis using a Bayesian mixing model inferred that overall ~90 % of root water uptake was derived from the upper soil profile. Sap flow and dendrometry data indicated that soil water availability did not seriously limit transpiration during the study period, though there was a suggestion that deeper (> 40 cm) soil water might provide a higher proportion of root water uptake (~30 %) in a drier period in the late summer. The study demonstrates the utility of prolonged real time monitoring of natural stable isotope abundance in soil-vegetation systems, which has great potential for further understanding of ecohydrological partitioning under changing hydroclimatic conditions.


2017 ◽  
Vol 14 (9) ◽  
pp. 2293-2306 ◽  
Author(s):  
Arndt Piayda ◽  
Maren Dubbert ◽  
Rolf Siegwolf ◽  
Matthias Cuntz ◽  
Christiane Werner

Abstract. The presence of vegetation alters hydrological cycles of ecosystems. Complex plant–soil interactions govern the fate of precipitation input and water transitions through ecosystem compartments. Disentangling these interactions is a major challenge in the field of ecohydrology and a pivotal foundation for understanding the carbon cycle of semi-arid ecosystems. Stable water isotopes can be used in this context as tracer to quantify water movement through soil–vegetation–atmosphere interfaces. The aim of this study is to disentangle vegetation effects on soil water infiltration and distribution as well as dynamics of soil evaporation and grassland water use in a Mediterranean cork oak woodland during dry conditions. An irrigation experiment using δ18O labelled water was carried out in order to quantify distinct effects of tree and herbaceous vegetation on the infiltration and distribution of event water in the soil profile. Dynamic responses of soil and herbaceous vegetation fluxes to precipitation regarding event water use, water uptake depth plasticity, and contribution to ecosystem soil evaporation and transpiration were quantified. Total water loss to the atmosphere from bare soil was as high as from vegetated soil, utilizing large amounts of unproductive evaporation for transpiration, but infiltration rates decreased. No adjustments of main root water uptake depth to changes in water availability could be observed during the experiment. This forces understorey plants to compete with adjacent trees for water in deeper soil layers at the onset of summer. Thus, understorey plants are subjected to chronic water deficits faster, leading to premature senescence at the onset of drought. Despite this water competition, the presence of cork oak trees fosters infiltration and reduces evapotranspirative water losses from the understorey and the soil, both due to altered microclimatic conditions under crown shading. This study highlights complex soil–plant–atmosphere and inter-species interactions controlling rain pulse transitions through a typical Mediterranean savannah ecosystem, disentangled by the use of stable water isotopes.


2014 ◽  
Vol 18 (10) ◽  
pp. 4189-4206 ◽  
Author(s):  
M. Bechmann ◽  
C. Schneider ◽  
A. Carminati ◽  
D. Vetterlein ◽  
S. Attinger ◽  
...  

Abstract. Detailed three-dimensional models of root water uptake have become increasingly popular for investigating the process of root water uptake. However, they suffer from a lack of information on important parameters, particularly on the spatial distribution of root axial and radial conductivities, which vary greatly along a root system. In this paper we explore how the arrangement of those root hydraulic properties and branching within the root system affects modelled uptake dynamics, xylem water potential and the efficiency of root water uptake. We first apply a simple model to illustrate the mechanisms at the scale of single roots. By using two efficiency indices based on (i) the collar xylem potential ("effort") and (ii) the integral amount of unstressed root water uptake ("water yield"), we show that an optimal root length emerges, depending on the ratio between roots axial and radial conductivity. Young roots with high capacity for radial uptake are only efficient when they are short. Branching, in combination with mature transport roots, enables soil exploration and substantially increases active young root length at low collar potentials. Second, we investigate how this shapes uptake dynamics at the plant scale using a comprehensive three-dimensional root water uptake model. Plant-scale dynamics, such as the average uptake depth of entire root systems, were only minimally influenced by the hydraulic parameterization. However, other factors such as hydraulic redistribution, collar potential, internal redistribution patterns and instantaneous uptake depth depended strongly on the arrangement on the arrangement of root hydraulic properties. Root systems were most efficient when assembled of different root types, allowing for separation of root function in uptake (numerous short apical young roots) and transport (longer mature roots). Modelling results became similar when this heterogeneity was accounted for to some degree (i.e. if the root systems contained between 40 and 80% of young uptake roots). The average collar potential was cut to half and unstressed transpiration increased by up to 25% in composed root systems, compared to homogenous ones. Also, the least efficient root system (homogenous young root system) was characterized by excessive bleeding (hydraulic lift), which seemed to be an artifact of the parameterization. We conclude that heterogeneity of root hydraulic properties is a critical component for efficient root systems that needs to be accounted for in complex three-dimensional root water uptake models.


Author(s):  
Hung-Phi Nguyen ◽  
Thao Nguyen Bich

This paper presents a study of a field trial experiment at olive orchard irrigated by runoff harvesting system under a dry climate which was carried out on 5-year-old olive trees (Olea europaea. L, cv. Barnea) in the middle of Negev desert, starting right after the floods, onwards during the summer growing season. The beginning of the experiment occurred after 2 years with little rain and no run-off events. The olive trees were under severe drought stress when we first initiated controlled flooding in 2017. In the second research year (2018), a massive natural flood had occurred at the end of April. Results show that the water distribution within the soil was highly inhomogeneous even under flood conditions. Soil water loss rate, due to transpiration was mainly correlated with the total amount of soil water and not atmospheric conditions. The relative root water uptake from shallow soil layers (0.3-1.5m) gradually reduced along the season, while the relative water uptake from the deeper layers (1.5-4m) became more pronounced.


2021 ◽  
Vol 22 (11) ◽  
pp. 5517
Author(s):  
Xin Jia ◽  
Xiaoqing Gong ◽  
Xumei Jia ◽  
Xianpeng Li ◽  
Yu Wang ◽  
...  

Water deficit adversely affects apple (Malus domestica) productivity on the Loess Plateau. Autophagy plays a key role in plant responses to unfavorable environmental conditions. Previously, we demonstrated that a core apple autophagy-related protein, MdATG8i, was responsive to various stresses at the transcript level. Here, we investigated the function of this gene in the response of apple to severe drought and found that its overexpression (OE) significantly enhanced drought tolerance. Under drought conditions, MdATG8iOE apple plants exhibited less drought-related damage and maintained higher photosynthetic capacities compared with the wild type (WT). The accumulation of ROS (reactive oxygen species) was lower in OE plants under drought stress and was accompanied by higher activities of antioxidant enzymes. Besides, OE plants accumulated lower amounts of insoluble or oxidized proteins but greater amounts of amino acids and flavonoid under severe drought stress, probably due to their enhanced autophagic activities. Particularly, MdATG8iOE plants showed higher root hydraulic conductivity than WT plants did under drought conditions, indicating the enhanced ability of water uptake. In summary, the overexpression of MdATG8i alleviated oxidative damage, modulated amino acid metabolism and flavonoid synthesis, and improved root water uptake, ultimately contributing to enhanced drought tolerance in apple.


2021 ◽  
Author(s):  
Fabian Bernhard ◽  
Katrin Meusburger

<p>The water balance in forest soils is strongly affected by vertical distribution of root water uptake. Our objective is to constrain the parametrization of root water uptake in the field by using the naturally occurring, seasonal variability in stable isotope signatures in precipitation to trace water fluxes through the soil and into the trees.</p> <p>The 1D soil hydrologic model LWFBrook90.jl contains the necessary processes to accurately reproduce hydrometric observations of volumetric soil moisture content and soil matric potential at forest sites in Switzerland. Root water uptake is described with a gradient-driven model using vertically varying root density and moisture-dependent rhizosphere resistivities. The hydrologic model will be extended with transport and fractionation processes to enable the modeling of isotopic signatures in soil and tree water.</p> <p>We present a planned field sampling campaign over two subsequent vegetation seasons at 10 long-term monitoring forest sites. Soil water is sampled with lysimeters at four soil depths, and tree water is sampled from the xylem with increment corers. Both types of samples are taken bi-weekly. First results from an ongoing multi-year soil water sampling campaign show that the signal can be traced along the soil profile and are presented to illustrate the approach.</p>


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1633 ◽  
Author(s):  
Ying Ma ◽  
Xianfang Song

Irrigation and fertilization both affect the water cycle in agricultural ecosystems. It is difficult to quantify root water uptake (RWU) which varies with crop development and seasons. In this study, a Bayesian mixing model (MixSIAR) coupling with dual stable isotopes (D and 18O) was used to quantify RWU patterns for winter wheat under different irrigation and fertilization treatments between 2014 and 2015 in Beijing, China. The main RWU depth during the greening-jointing, jointing-heading, heading-filling, and filling-harvest stages was 0–20 cm, 20–70 cm, 0–20 cm, and 20–70 cm, respectively, which showed water uptake proportions of 67.0%, 42.0%, 38.7%, and 34.9%, respectively. Significant differences in RWU patterns appeared between the 2014 and 2015 seasons. The main RWU depth increased gradually from 0–20 cm at the greening-jointing stage to 20–70 cm at the jointing-heading stage and 70–150 cm during the heading to harvest period in 2014. However, winter wheat primarily took up soil water from the 0–70 cm layer in 2015. The average water uptake proportion in the top layer (0–20 cm) in 2015 (42.6%) was remarkably higher than that in 2014 (28.7%). There was a significantly negative relationship (p < 0.01) between the water uptake proportion and the proportion of root length at the filling-harvest stage in 2014, while no significant correlation (p > 0.05) was found in 2015. Variable distributions of root characteristics and soil moisture induced by different irrigation and fertilization comprehensively affected the RWU profile, particularly under severe drought environments in 2015. Treatments with fertilization of 105 kg hm−2 N or irrigation of 20 mm during the greening-jointing stage significantly promoted water uptake contribution in the 70–150 cm (32.2%) and 150–200 cm (23.5%) layers at the jointing-heading stage in 2015, while other treatments had a shallow dominant RWU depth (0–20 cm). The planned wetting layer should be kept within the main RWU depth of 0–70 cm for improving irrigation water use efficiency.


Sign in / Sign up

Export Citation Format

Share Document