scholarly journals Effect of parameter choice in root water uptake models – the arrangement of root hydraulic properties within the root architecture affects dynamics and efficiency of root water uptake

2014 ◽  
Vol 18 (10) ◽  
pp. 4189-4206 ◽  
Author(s):  
M. Bechmann ◽  
C. Schneider ◽  
A. Carminati ◽  
D. Vetterlein ◽  
S. Attinger ◽  
...  

Abstract. Detailed three-dimensional models of root water uptake have become increasingly popular for investigating the process of root water uptake. However, they suffer from a lack of information on important parameters, particularly on the spatial distribution of root axial and radial conductivities, which vary greatly along a root system. In this paper we explore how the arrangement of those root hydraulic properties and branching within the root system affects modelled uptake dynamics, xylem water potential and the efficiency of root water uptake. We first apply a simple model to illustrate the mechanisms at the scale of single roots. By using two efficiency indices based on (i) the collar xylem potential ("effort") and (ii) the integral amount of unstressed root water uptake ("water yield"), we show that an optimal root length emerges, depending on the ratio between roots axial and radial conductivity. Young roots with high capacity for radial uptake are only efficient when they are short. Branching, in combination with mature transport roots, enables soil exploration and substantially increases active young root length at low collar potentials. Second, we investigate how this shapes uptake dynamics at the plant scale using a comprehensive three-dimensional root water uptake model. Plant-scale dynamics, such as the average uptake depth of entire root systems, were only minimally influenced by the hydraulic parameterization. However, other factors such as hydraulic redistribution, collar potential, internal redistribution patterns and instantaneous uptake depth depended strongly on the arrangement on the arrangement of root hydraulic properties. Root systems were most efficient when assembled of different root types, allowing for separation of root function in uptake (numerous short apical young roots) and transport (longer mature roots). Modelling results became similar when this heterogeneity was accounted for to some degree (i.e. if the root systems contained between 40 and 80% of young uptake roots). The average collar potential was cut to half and unstressed transpiration increased by up to 25% in composed root systems, compared to homogenous ones. Also, the least efficient root system (homogenous young root system) was characterized by excessive bleeding (hydraulic lift), which seemed to be an artifact of the parameterization. We conclude that heterogeneity of root hydraulic properties is a critical component for efficient root systems that needs to be accounted for in complex three-dimensional root water uptake models.

2014 ◽  
Vol 11 (1) ◽  
pp. 757-805 ◽  
Author(s):  
M. Bechmann ◽  
C. Schneider ◽  
A. Carminati ◽  
D. Vetterlein ◽  
S. Attinger ◽  
...  

Abstract. Detailed three-dimensional models of root water uptake have become increasingly popular for investigating the process of root water uptake. However they suffer from a lack of information in important parameters, especially distribution of root hydraulic properties. In this paper we explore the role that arrangement of root hydraulic properties and root system topology play for modelled uptake dynamics. We apply microscopic models of single root structures to investigate the mechanisms shaping uptake dynamics and demonstrate the effects in a complex three dimensional root water uptake model. We introduce two efficiency indices, for (a) overall plant resistance and (b) water stress and show that an appropriate arrangement of root hydraulic properties can increase modelled efficiency of root water uptake in single roots, branched roots and entire root systems. The average uptake depth of the complete root system was not influenced by parameterization. However, other factors such as evolution of collar potential, which is related to the plant resistance, root bleeding and redistribution patterns were strongly affected by the parameterization. Root systems are more efficient when they are assembled of different root types, allowing for separation of root function in uptake (short young) roots and transport (longer mature) roots. Results become similar, as soon as this composition is accounted for to some degree (between 40 and 80% of young uptake roots). Overall resistance to root water uptake was decreased up to 40% and total transpiration was increased up to 25% in these composed root systems, compared to homogenous root systems. Also, one parameterization (homogenous young root system) was characterized by excessive bleeding (hydraulic lift), which was accompanied by lowest efficiency. We conclude that heterogeneity of root hydraulic properties is a critical component of complex three dimensional uptake models. Efficiency measures together with information on critical xylem potentials may be useful in parameterizing root property distribution.


2021 ◽  
Author(s):  
Ali Mehmandoost Kotlar ◽  
Mathieu Javaux

<p>Root water uptake is a major process controlling water balance and accounts for about 60% of global terrestrial evapotranspiration. The root system employs different strategies to better exploit available soil water, however, the regulation of water uptake under the spatiotemporal heterogeneous and uneven distribution of soil water is still a major question. To tackle this question, we need to understand how plants cope with this heterogeneity by adjustment of above ground responses to partial rhizosphere drying. Therefore, we use R-SWMS simulating soil water flow, flow towards the roots, and radial and the axial flow inside the root system to perform numerical experiments on a 9-cell gridded rhizotrone (50 cm×50 cm). The water potentials in each cell can be varied and fixed for the period of simulation and no water flow is allowed between cells while roots can pass over the boundaries. Then a static mature maize root architecture to different extents invaded in all cells is subjected to the various arrangements of cells' soil water potentials. R-SWMS allows determining possible hydraulic lift in drier areas. With these simulations, the variation of root water and leaf water potential will be determined and the role of root length density in each cell and corresponding average soil-root water potential will be statistically discussed.</p>


2021 ◽  
Author(s):  
Jan Vanderborght ◽  
Valentin Couvreur ◽  
Felicien Meunier ◽  
Andrea Schnepf ◽  
Harry Vereecken ◽  
...  

<p>Plant water uptake from soil is an important component of terrestrial water cycle with strong links to the carbon cycle and the land surface energy budget. To simulate the relation between soil water content, root distribution, and root water uptake, models should represent the hydraulics of the soil-root system and describe the flow from the soil towards root segments and within the 3D root system architecture according to hydraulic principles. We have recently demonstrated how macroscopic relations that describe the lumped water uptake by all root segments in a certain soil volume, e.g. in a thin horizontal soil layer in which soil water potentials are uniform, can be derived from the hydraulic properties of the 3D root architecture. The flow equations within the root system can be scaled up exactly and the total root water uptake from a soil volume depends on only two macroscopic characteristics of the root system: the root system conductance, K<sub>rs</sub>, and the uptake distribution from the soil when soil water potentials in the soil are uniform, <strong>SUF</strong>. When a simple root hydraulic architecture was assumed, these two characteristics were sufficient to describe root water uptake from profiles with a non-uniform water distribution. This simplification gave accurate results when root characteristics were calculated directly from the root hydraulic architecture. In a next step, we investigate how the resistance to flow in the soil surrounding the root can be considered in a macroscopic root water uptake model. We specifically investigate whether the macroscopic representation of the flow in the root architecture, which predicts an effective xylem water potential at a certain soil depth, can be coupled with a model that describes the transfer from the soil to the root using a simplified representation of the root distribution in a certain soil layer, i.e. assuming a uniform root distribution.</p>


2018 ◽  
Vol 28 (5) ◽  
pp. 629-636 ◽  
Author(s):  
Matthew B. Bertucci ◽  
David H. Suchoff ◽  
Katherine M. Jennings ◽  
David W. Monks ◽  
Christopher C. Gunter ◽  
...  

Grafting of watermelon (Citrullus lanatus) is an established production practice that provides resistance to soilborne diseases or tolerance to abiotic stresses. Watermelon may be grafted on several cucurbit species (interspecific grafting); however, little research exists to describe root systems of these diverse rootstocks. A greenhouse study was conducted to compare root system morphology of nine commercially available cucurbit rootstocks, representing four species: pumpkin (Cucurbita maxima), squash (Cucurbita pepo), bottle gourd (Lagenaria siceraria), and an interspecific hybrid squash (C. maxima × C. moschata). Rootstocks were grafted with a triploid watermelon scion (‘Exclamation’), and root systems were compared with nongrafted (NG) and self-grafted (SG) ‘Exclamation’. Plants were harvested destructively at 1, 2, and 3 weeks after transplant (WAT), and data were collected on scion dry weight, total root length (TRL), average root diameter, root surface area, root:shoot dry-weight ratio, root diameter class proportions, and specific root length. For all response variables, the main effect of rootstock and rootstock species was significant (P < 0.05). The main effect of harvest was significant (P < 0.05) for all response variables, with the exception of TRL proportion in diameter class 2. ‘Ferro’ rootstock produced the largest TRL and root surface area, with observed values 122% and 120% greater than the smallest root system (‘Exclamation’ SG), respectively. Among rootstock species, pumpkin produced the largest TRL and root surface area, with observed values 100% and 82% greater than those of watermelon, respectively. These results demonstrate that substantial differences exist during the initial 3 WAT in root system morphology of rootstocks and rootstock species available for watermelon grafting and that morphologic differences of root systems can be characterized using image analysis.


Soil Research ◽  
1990 ◽  
Vol 28 (4) ◽  
pp. 487 ◽  
Author(s):  
MA Rab ◽  
KA Olsson ◽  
ST Willatt

Resistances to water flow were analysed for the soil-root system of a potato crop growing on a duplex soil-where soil hydraulic properties varied with depth-under two irrigation regimes: 'wet' (irrigated weekly) and 'dry' (irrigated twice only during the growing season). The relative magnitudes of the soil and plant resistances controlling root water uptake were evaluated over depth and time using field-measured soil hydraulic properties and root length densities in successive soil layers. Resistance to water flow in the root system is likely to be the dominant resistance in the liquid phase, although soil resistance increased more rapidly than plant resistance with decreasing soil-water matric potential and root length density. Soil resistance reached similar values to plant resistance only when the soil-water matric potential was in the range -900 kPa to -1500 kPa (corresponding soil hydraulic conductivities of 10-7 and 10-8 m day-1 respectively), depending on the root length beneath unit ground area in the soil layer, La. Poor utilization of water from depth of this soil was attributed to resistance in the root system (possibly radial) associated with low La. Practical considerations for improved water management of the potato crop on clay soils are discussed.


2020 ◽  
Author(s):  
Kanishka Singh ◽  
Benjamin Hafner ◽  
James Knighton ◽  
M. Todd Walter ◽  
Taryn Bauerle

&lt;p&gt;Forest cover exerts a significant control on the partitioning of precipitation between evapotranspiration and surface runoff. Thus, understanding how plants take up and transpire water in forested catchments is essential to predict flooding potential and hydrologic cycling. A growing literature underscores the importance of integrating whole-plant hydraulics, including such processes as the spatial variability of root distribution and the temporally dynamic nature of root water uptake by depth in understanding the relationship between changes in vegetation and hydrology. The analysis of stable isotopes of water (&lt;sup&gt;18&lt;/sup&gt;O and &lt;sup&gt;2&lt;/sup&gt;H) sourced from soils and plant tissue has enabled the estimation of tree root water uptake depths and water use strategies. Despite the general acceptance of stable water isotopic data to estimate plant hydraulic dynamics, this methodology imposes assumptions that may produce spurious results. For example, end member mixing analysis neglects time-delays during tree-water storage. Also, it is likely that hydraulic redistribution processes of plants, which transport water across soil depths and both into and out of plant tissue, modify &amp;#948;&lt;sup&gt;18&lt;/sup&gt;O and &amp;#948;&lt;sup&gt;2&lt;/sup&gt;H; the isotopic signature of a collected sample may thus reflect a history of transport and exposure to fractionating processes not accounted for in analysis. We tested the feasibility of C-dots, core-shell silica polyethylene-glycol coated fluorescent nano-particles (5.1&amp;#160;nm diameter) in 20&amp;#160;&amp;#181;mol/l solution with H&lt;sub&gt;2&lt;/sub&gt;O labeled with a near-infrared fluorophore, cyanine 5.5 (excitation maximum of 646 nm, emission maximum of 662 nm), as an alternative to stable water isotopes in the investigation of plant hydraulics. We examined the absorption and transport of C-dots through soil, as well as roots and aerial structures of Eastern hemlock (Tsuga canadensis), Eastern white pine (Pinus strobus), and white spruce (Picea glauca) saplings (n = 12 each) via an IVIS-200 luminescence in-situ imaging system. We compared the fluid mechanics, residence times and mixing schemes of C-dots with &lt;sup&gt;2&lt;/sup&gt;H-labeled water during transport within these plant species to establish the nanoparticles as a viable alternative through a split-root hydraulic redistribution experiment under moderate and severe drought conditions. We present a residence-time distribution to elucidate the mixing scheme of C-dot solution and calibration curves to aid future studies. This research is the premier assessment of this nanoparticle as an alternative tracer to stable water isotopes, and as such may yield insights for broader applications.&lt;/p&gt;


2013 ◽  
Vol 12 (4) ◽  
pp. vzj2013.02.0042 ◽  
Author(s):  
Mathieu Javaux ◽  
Valentin Couvreur ◽  
Jan Vanderborght ◽  
Harry Vereecken

1987 ◽  
Vol 38 (3) ◽  
pp. 513 ◽  
Author(s):  
AP Hamblin ◽  
D Tennant

Total root length per unit ground area (La) is often considered to be directly related to the amount and rate of water uptake. Experiments were conducted to compare the water use of spring wheat, barley, lupin (L. angustifolius) and field pea on four differing soil types in drought-stressed conditions. The La values of cereals were consistently five to ten times as large as those of grain legumes, whereas the aboveground biomass was sim~iar and never greater than twice that of the grain legumes. Growing-season water loss (WL) from the soil profile was very similar for wheat and lupins, despite this big difference in root length. Soil evaporation may have been greater under lupins, but when crop water uptake was compared for the period when leaf area was greatest, rates of change in soil water content within the root zone were still similar and were not well correlated with La. Specific root water uptake (Ur) was consistently greater for lupin than wheat. Maximum rooting depth was better correlated with WL than was La in all cases. Higher Ur values in lupin and pea may be related to their large and abundant metaxylem vessels, which give much lower axial resistance than in cereals. These results provide strong evidence for genotypic variation in root morphology, density and root extension between dicotyledenous and monocotyledenous species. They also indicate that La is not necessarily the root morphological characteristic most responsible for efficiency of water uptake in drought-stressed environments.


Sign in / Sign up

Export Citation Format

Share Document