jointing stage
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 31)

H-INDEX

7
(FIVE YEARS 3)

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12473
Author(s):  
Dongxiao Li ◽  
Shaojing Mo ◽  
William D. Batchelor ◽  
Ruiting Cheng ◽  
Hongguang Wang ◽  
...  

Background Optimal nitrogen (N) application and plant growth regulators can improve wheat productivity. This can help to improve yield level and ensure food security with limited resources in the Huang-Huai-Hai Plain of China (HPC). Methods A 2-year field experiment was conducted using a randomized block design with four treatments (TS-N topdressing at pseudostem erection stage ; TPS-N topdressing combined with paclobutrazol application at pseudostem erection stage; TJ-N topdressing at jointing stage; TPJ-N topdressing at combined with paclobutrazol application at jointing stage) in 2011–2013. Results The grain number per ear, thousand kernel weight and yield for the TJ and TPJ treatments were higher than those of the TS and TPS treatments. Grain number per ear, yield, and thousands kernel weigh for the TPJ treatment were significantly higher than for the TS and TPS in 2011–2012 (9.82% and 7.27%, 10.23% and 8.99%, 6.12% and 5.58%) and in 2012–2013 (10.21% and 11.55%, 8.00% and 6.58%, 0.00 and 0.00), respectively. Thousands kernel weight under TJ were significantly higher than those under TS and TPS by 13.21% and 14.03%, respectively in 2012–2013. The floret number, significantly correlated with cytokinin content, was also significantly increased under TJ and TPJ at connectivum differentiation stage. For TPJ treatment, the floret number was significantly higher than for the TS, TPS, and TJ by 19.92%, 10.21%, 6.10% in 2011–2012; it was higher than for the TS and TPS by 28.06% and 29.61% in 2012–2013, respectively. The relative expression level of cytokinin oxidase/dehydrogenase gene (TaCKX2.2) was improved during flowering, when cytokinin content was at high level and was also inhibited by paclobutrazol with different degrees. Conclusions Therefore, nitrogen topdressing at jointing stage had increased grain number per ear, thousand kernel weight, and grain yield of wheat. Paclobutrazol could delay spike differentiation and promote cytokinin accumulation that induced expression of TaCKX2.2, maintaining hormonal balance and affecting wheat spike morphogenesis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ke Xu ◽  
Qiang Chai ◽  
Falong Hu ◽  
Zhilong Fan ◽  
Wen Yin

AbstractIntercropping increases the grain yield to feed the ever-growing population in the world by cultivating two crop species on the same area of land. It has been proven that N-fertilizer postponed topdressing can boost the productivity of cereal/legume intercropping. However, whether the application of this technology to cereal/cereal intercropping can still increase grain yield is unclear. A field experiment was conducted from 2018 to 2020 in the arid region of northwestern China to investigate the accumulation and distribution of dry matter and yield performance of wheat/maize intercropping in response to N-fertilizer postponed topdressing application. There were three N application treatments (referred as N1, N2, N3) for maize and the total amount were all 360 kg N ha−1. N fertilizer were applied at four time, i.e. prior to sowing, at jointing stage, at pre-tasseling stage, and at 15 days post-silking stage, respectively. The N3 treatment was traditionally used for maize production and allocations subjected to these four stages were 2:3:4:1. The N1 and N2 were postponed topdressing treatments which allocations were 2:1:4:3 and 2:2:4:2, respectively. The results showed that the postponed topdressing N fertilizer treatments boosted the maximum average crop growth rate (CGR) of wheat/maize intercropping. The N1 and N2 treatments increased the average maximum CGR by 32.9% and 16.4% during the co-growth period, respectively, and the second average maximum CGR was increased by 29.8% and 12.6% during the maize recovery growth stage, respectively, compared with the N3 treatment. The N1 treatment was superior to other treatments, since it increased the CGR of intercropped wheat by 44.7% during the co-growth period and accelerated the CGR of intercropped maize by 29.8% after the wheat had been harvested. This treatment also increased the biomass and grain yield of intercropping by 8.6% and 33.7%, respectively, compared with the current N management practice. This yield gain was primarily attributable to the higher total translocation of dry matter. The N1 treatment increased the transfer amount of intercropped wheat by 28.4% from leaf and by 51.6% from stem, as well as increased the intercropped maize by 49.0% of leaf, 36.6% of stem, and 103.6% of husk, compared to N3 treatment, respectively. Integrated the N fertilizer postponed topdressing to the wheat/maize intercropping system have a promotion effect on increasing the translocation of dry matter to grain in vegetative organs. Therefore, the harvest index of intercropped wheat and maize with N1 was 5.9% and 5.3% greater than that of N3, respectively. This demonstrated that optimizing the management of N fertilizer can increase the grain yield from wheat/maize intercropping via the promotion of accumulation and translocation of dry matter.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Shichao Jin ◽  
Yanjun Su ◽  
Yongguang Zhang ◽  
Shilin Song ◽  
Qing Li ◽  
...  

Plant growth rhythm in structural traits is important for better understanding plant response to the ever-changing environment. Terrestrial laser scanning (TLS) is a well-suited tool to study structural rhythm under field conditions. Recent studies have used TLS to describe the structural rhythm of trees, but no consistent patterns have been drawn. Meanwhile, whether TLS can capture structural rhythm in crops is unclear. Here, we aim to explore the seasonal and circadian rhythms in maize structural traits at both the plant and leaf levels from time-series TLS. The seasonal rhythm was studied using TLS data collected at four key growth periods, including jointing, bell-mouthed, heading, and maturity periods. Circadian rhythms were explored by using TLS data acquired around every 2 hours in a whole day under standard and cold stress conditions. Results showed that TLS can quantify the seasonal and circadian rhythm in structural traits at both plant and leaf levels. (1) Leaf inclination angle decreased significantly between the jointing stage and bell-mouthed stage. Leaf azimuth was stable after the jointing stage. (2) Some individual-level structural rhythms (e.g., azimuth and projected leaf area/PLA) were consistent with leaf-level structural rhythms. (3) The circadian rhythms of some traits (e.g., PLA) were not consistent under standard and cold stress conditions. (4) Environmental factors showed better correlations with leaf traits under cold stress than standard conditions. Temperature was the most important factor that significantly correlated with all leaf traits except leaf azimuth. This study highlights the potential of time-series TLS in studying outdoor agricultural chronobiology.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11700
Author(s):  
Kaizhen Liu ◽  
Chengxiang Zhang ◽  
Beibei Guan ◽  
Rui Yang ◽  
Ke Liu ◽  
...  

Background Timely sowing is an important agronomic measure to ensure the normal germination, stable seedling establishment, and yield formation for winter wheat (Triticum aestivum L.). Delayed sowing frequently occurs in the current multi-cropping system and mechanized production of this crop. However, the ways in which different sowing dates affect yield and its potential mechanism is still unknown in the middle-lower Yangtze River Basin. We sought to provide a theoretical basis for these mechanisms to improve regional wheat production. Methods We investigated the wheat’s yield differences in a two-year field study under different sowing dates and took into account related growth characteristics including meteorological conditions, growth period, tillers, dry matter accumulation (DMA), and nitrogen accumulation (NA). We used the logistic curve model to simulate DMA and NA dynamics of single stem wheat under different sowing dates. We then analyzed and compared wheat accumulation for different sowing dates. Results Our results showed that grain yield declined by 0.97 ± 0.22% with each one-day change (either early or delayed) in sowing beyond the normal sowing date. The yield loss could be explained by the inhibition of crop growth, yield components, biomass and nitrogen (N) production. The negative effects of delayed sowing were caused by environmental limitations including adverse weather factors such as low temperature during vegetative growth, shortened duration of various phases of crop development, and increased temperature during the grain-filling period. The grain yield gap decreased between the late and normal sowing periods owing to a compensatory effect between the highest average rates (Vt) and the rapid accumulation period (T) of DMA and NA for single stem wheat. The grain yield was maintained at 6,000 kg ha−1 or more when the ratio of DMA at the mature-to-jointing stage (MD/JD) and the ratio of NA at the mature-to-jointing stage (MN/JN) was 4.06 (P < 0.01) and 2.49 (P < 0.05), respectively. The compensatory effect did not prevent the impact caused by delayed sowing, which caused biomass and N production to decrease. Physiological development reached a maximal accumulation rate (Tm) of NA earlier than DMA.


2021 ◽  
Vol 13 (13) ◽  
pp. 7218
Author(s):  
Xingyang Song ◽  
Guangsheng Zhou ◽  
Qijin He

Crop photosynthesis is closely related to leaf water content (LWC), and clarifying the LWC conditions at critical points in crop photosynthesis has great theoretical and practical value for accurately monitoring drought and providing early drought warnings. This experiment was conducted to study the response of LWC to drought and rewatering and to determine the LWC at which maize photosynthesis reaches a maximum and minimum and thus changes from a state of stomatal limitation (SL) to non-stomatal limitation (NSL). The effects of rehydration were different after different levels of drought stress intensity at different growth stages, and the maize LWC recovered after rewatering following different drought stresses at the jointing stage; however, the maize LWC recovered more slowly after rewatering following 43 days and 36 days of drought stress at the tasselling and silking stages, respectively. The LWC when maize photosynthesis changed from SL to NSL was 75.4% ± 0.38%, implying that the maize became rehydrated under physiologically impaired conditions. The LWCs at which the maize Vcmax25 reached maximum values and zero differed between the drought and rewatering periods. After exposure to drought stress, the maize exhibited enhanced drought stress tolerance, an obviously reduced suitable water range, and significantly weakened photosynthetic capacity. These results provide profound insight into the turning points in maize photosynthesis and their responses to drought and rewatering. They may also help to improve crop water management, which will be useful in coping with the increased frequency of drought and extreme weather events expected under global climate change.


BMC Genomics ◽  
2021 ◽  
Vol 22 (S3) ◽  
Author(s):  
Menglei Wang ◽  
Chenhui Yang ◽  
Kangning Wei ◽  
Miao Zhao ◽  
Liqiang Shen ◽  
...  

Abstract Background Winter wheat requires prolonged exposure to low temperature to initiate flowering (vernalization). Shoot apical meristem of the crown is the site of cold perception, which produces leaf primordia during vegetative growth before developing into floral primordia at the initiation of the reproductive phase. Although many essential genes for winter wheat cold acclimation and floral initiation have been revealed, the importance of microRNA (miRNA) meditated post-transcriptional regulation in crowns is not well understood. To understand the potential roles of miRNAs in crown tissues, we performed a temporal expression study of miRNAs in crown tissues at the three-leaf stage, winter dormancy stage, spring green-up stage, and jointing stage of winter wheat grown under natural growth conditions. Results In total, 348 miRNAs belonging to 298 miRNA families, were identified in wheat crown tissues. Among them, 92 differentially expressed miRNAs (DEMs) were found to be significantly regulated from the three-leaf stage to the jointing stage. Most of these DEMs were highly expressed at the three-leaf stage and winter dormancy stage, and then declined in later stages. Six DEMs, including miR156a-5p were markedly induced during the winter dormancy stage. Eleven DEMs, including miR159a.1, miR390a-5p, miR393-5p, miR160a-5p, and miR1436, were highly expressed at the green-up stage. Twelve DEMs, such as miR172a-5p, miR394a, miR319b-3p, and miR9676-5p were highly induced at the jointing stage. Moreover, 14 novel target genes of nine wheat or Pooideae-specific miRNAs were verified using RLM-5′ RACE assay. Notably, six mTERFs and two Rf1 genes, which are associated with mitochondrial gene expression, were confirmed as targets of three wheat-specific miRNAs. Conclusions The present study not only confirmed the known miRNAs associated with phase transition and floral development, but also identified a number of wheat or Pooideae-specific miRNAs critical for winter wheat cold acclimation and floral development. Most importantly, this study provided experimental evidence that miRNA could regulate mitochondrial gene expression by targeting mTERF and Rf1 genes. Our study provides valuable information for further exploration of the mechanism of miRNA mediated post-transcriptional regulation during winter wheat vernalization and inflorescent initiation.


2021 ◽  
Vol 9 (2) ◽  
pp. 225-234
Author(s):  
Liuxing Xu ◽  
Zhaohong Xu ◽  
Mingxia Chen ◽  
Jianguo Zhang

Whole-crop wheat (WCW) is rich in nutrients and is widely used as a forage crop. This study consisted of 2 experiments: Experiment 1 studied the yield, nutritive value and silage quality of WCW at 3 seeding rates (320 kg/ha, S320; 385 kg/ha, S385; and 450 kg/ha, S450) and different fertilizing times, i.e. 60% at seedling stage and the remaining 40% at the jointing stage vs. heading stage; and Experiment 2 examined the yield, nutritive value and silage quality of WCW receiving different fertilizer types, i.e. urea, compound fertilizer (N:P:K) and urea + compound fertilizer (all iso-nitrogenous). With the increased seeding rate, dry matter (DM) and crude protein (CP) yields tended to increase, but relative feed value tended to decrease. Experiment 1: there was no significant interaction between time of applying the second fertilizer dose and seeding rate in terms of concentrations of CP, crude fiber, ether extract, crude ash, nitrogen-free extract, neutral detergent fiber (NDF) and acid detergent fiber (ADF) in wheat (P>0.05). However, a significant interaction between fertilizing time and seeding rate was observed in terms of silage fermentation quality (pH, lactic acid, butyric acid and NH3-N concentrations) (P<0.05). Experiment 2: DM yield, CP yield and concentrations of CP, ADF and water-soluble carbohydrate were not affected by fertilizer type (P>0.05). Fertilizer type had significant effects on pH of silage and concentrations of organic acids (except propionic acid) and NH3-N in WCW silage (P<0.05). Under the present study conditions, considering DM yield, nutrient composition and silage fermentation quality, an optimal seeding rate of wheat for forage appears to be about 385 kg/ha. N fertilizer should be applied at the seedling stage and jointing stage. Although applying a mixture of urea and compound fertilizer had no significant effects on yield and nutritive value of WCW relative to applying urea alone, it did improve silage fermentation quality. Results may differ on different soils.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Biaosheng Lin ◽  
Jiamin Liu ◽  
Xue Zhang ◽  
Changren Weng ◽  
Zhanxi Lin

The flora compositions of nitrogen-fixing bacteria in roots of Pennisetum giganteum z.x.lin at different growth stages and the expression and copy number of nitrogen-fixing gene nifH were studied by Illumina Miseq second-generation sequencing technology and qRT-PCR. The results showed that there were more than 40,000~50,000 effective sequences in 5 samples from the roots of P. giganteum, with Proteobacteria and Cyanobacteria as the dominant nitrogen-fixing bacteria based on the OTU species annotations for each sample and Bradyrhizobium as the core bacterial genera. The relative expression and quantitative change of nifH gene in roots of P. giganteum at different growth stages were consistent with the changes in the flora compositions of nitrogen-fixing microbia. Both revealed a changing trend with an initial increase and a sequential decrease, as well as changing order as jointing stage>maturation stage>tillering stage>seedling stage>dying stage. The relative expression and copy number of nifH gene were different in different growth stages, and the difference among groups basically reached a significant level ( p < 0.05 ). The relative expression and copy number of nifH gene at the jointing stage were the highest, and the 2-△△CT value was 4.43 folds higher than that at the seedling stage, with a copy number of 1.32 × 10 7 /g. While at the dying stage, it was the lowest, and the 2-△△CT value was 0.67 folds, with a copy number of 0.31 × 10 7 /g.


Author(s):  
Mohamed Ridha Aissaoui ◽  
Mohamed Fenni

 Different levels of supplemental irrigation regimes on four wheat (Triticum aestivum L.) genotypes were evaluated, two of which were introduced into Sétif region by ACSAD institution, during the growing season 2013-2014, in order to assess the effect of deficit irrigation pattern on yield traits performance and to determine most suitable genotype for local semi-arid conditions. On the basis of the experimentation data, it was found that supplemental irrigation improved the investigated genotypes yield, which ranged from 220.03 g m-2 for variety El-wifak in rainfed conditions to 368.3 g m-2 for variety Djanet (ACSAD899) with an increase of about 67%; just by applying two irrigations, the first at the jointing stage and the second at mid-flowering stage. This increase was related to the improvement of most agronomic traits that correlated significantly and positively with grain yield, in response to supplemental irrigation application. These findings indicated that Djanet (ACSAD899) was a genotype successfully introduced under irrigated conditions, while Hidhab (HD1220) with an average grain yield of 298.3 g m-2, proved to be more stable and well adapted to the locally rainfed conditions.


Sign in / Sign up

Export Citation Format

Share Document