Spatial variation of erosion rates and passive margin escarpment embayment from New England, NSW and Bellenden Ker, Queensland, Australia: an analysis using GIS and in-situ 10Be basin-wide cosmogenic nuclides

Author(s):  
Jamie Glass ◽  
Alexandru Codilean ◽  
Reka Fülöp ◽  
Klaus Wilcken ◽  
Tim Cohen ◽  
...  

<p>The eastern seaboard of Australia is characterized by a passive margin and a continental divide that separates the inland-draining rivers from those that drain to the Coral and Tasman seas. Seaward of this divide lies the Great Escarpment (GE) of Australia that separates a moderate relief coastal plain from a low relief, high elevation plateau. Quantifying the spatial variation of erosion rates from temperate New England (NE), NSW and tropical Bellenden Ker (BK), Queensland, two regions with distinctly different climates and escarpment embayment, could help constrain erosional controls that contribute to escarpment form. In this study, we compared forty detrital 10Be samples collected from sediments in the main trunk and tributaries of five major rivers: the Macleay, Bellinger, and Clarence in NE and the Russel-Mulgrave and North Johnstone in BK. We then traced the escarpment position in ARCGIS and calculated a sinuosity ratio to better compare the degree of embayment in each region. Across both datasets we found that for NE, which has deep gorges cutting into the plateau, the degree of embayment was twice that of BK, where the escarpment position is significantly less embayed and erosion rates significantly more variable (ratio of .18 vs .38). Erosion rates in low slope areas, such as on the plateau, were universally low with no other significant controlling factors. There was no correlation between erosion rates and catchment area, and that our data echo previous studies that find that once mean rainfall passes an approximate threshold (around 2000mm/yr) basin characteristics that are known to control erosion rates, such as slope and lithology, are subdued.</p><p> In temperate NE, where rainfall ranges from approximately 800-1200mm/yr, there was a moderate linear correlation with mean catchment rainfall and erosion rates (R<sup>2</sup> .50), which is likely due to a strong orographic effect due to the escarpment. Erosion rates from tributaries below the plateau were highly variable and ranged from 5m/Ma up to 60m/Ma and correlated strongly with mean catchment slope (R<sup>2</sup> .86). In addition, there were moderate inverse linear correlations between erosion rate and the catchment total percent granite and sedimentary rock (R<sup>2</sup> .53 and .63 respectively) and a moderate correlation between erosion rate and catchment total percent metamorphic rock (R<sup>2</sup> .57). Similar to previous studies, these data suggest that in temperate climates with moderate amounts of annual rainfall, individual basin characteristics play a significant role in controlling basin wide erosion rates.</p><p>In contrast, data from tropical BK, where mean rainfall amounts are in excess of 2000mm/yr, erosion rates from tributaries below the plateau were significantly less variable than NE. Rates had a mean of 37m/Ma ± 9 (standard deviation 5m/Ma, N=10) and were not significantly correlated with mean catchment slope nor catchment lithology. The mean erosion rate of BK is similar to that of other studies in the region, though with slightly less variability, and possibly reinforces the hypothesis from other researchers that in tropical climates with significant mean rainfall, soil depth effectively armors hillslopes and prevents bedrock erosion from occurring.</p>

2020 ◽  
Vol 3 (2) ◽  
pp. 32-38
Author(s):  
Prayogi Dhuha Brahmanto ◽  
Bambang Sulistyo ◽  
M. Faiz Barchia

Rindu Hati sub-watershed is located in District of Central Bengkulu, Bengkulu Province, that has flat until montainous topography with various slope and annual rainfall up to 4,032 mm year-1 which possible causes erosion. This research was aimed to analyze soil erosion at Rindu Hati sub-watershed based on the Universal Soil Loss Equation formula, using remote sensing imagery data and by applying GIS technique. USLE method were uses five parameters, those were length and slope factor, rainfall erosivity factor, crop management factor and land conservation , and soil erodibility factor. An overlay analysis has been conducted to obtain the erosion. Then, the result is overlaid with soil depth map to get the level of erosion hazard, which is classified into: very light, light, moderate, heavily, and very heavily. The results showed that the total erosion was 12,410,650.59 tons ha-1 year-1, while its level of erosion hazard were very light (15 tons ha-1 year-1) covering an area of 2,983 ha spreading over community agricultural areas and forest areas, the rate of light erosion (> 15-60 tons ha-1 year-1) has the largest area of covering an area of 10,410.05 ha which scattered in plantation areas having flat topography, moderate erosion rates (> 60-180 tons ha-1 year-1) of 1,317.33 ha spread over land areas with shrub land use and relatively flat topography, heavily erosion rates (> 180- 480 tons ha-1 year-1) covering 1,735.48 ha spread over land with shrub land use but has a hilly topography and very heavily erosion rates (> 480 tons ha-1 year-1) covering 2,700.42 ha located in the mining area. Erosion potential rate mapping will be very helpful in determining good and appropirate land management and conservation in the study area. 


Author(s):  
Charles M. Shobe ◽  
Georgina L. Bennett ◽  
Gregory E. Tucker ◽  
Kevin Roback ◽  
Scott R. Miller ◽  
...  

Constraining Earth’s sediment mass balance over geologic time requires a quantitative understanding of how landscapes respond to transient tectonic perturbations. However, the mechanisms by which bedrock lithology governs landscape response remain poorly understood. Rock type influences the size of sediment delivered to river channels, which controls how efficiently rivers respond to tectonic forcing. The Mendocino triple junction region of northern California, USA, is one landscape in which large boulders, delivered by hillslope failures to channels, may alter the pace of landscape response to a pulse of rock uplift. Boulders frequently delivered by earthflows in one lithology, the Franciscan mélange, have been hypothesized to steepen channels and slow river response to rock uplift, helping to preserve high-elevation, low-relief topography. Channels in other units (the Coastal Belt and the Franciscan schist) may experience little or no erosion inhibition due to boulder delivery. Here we investigate spatial patterns in channel steepness, an indicator of erosion resistance, and how it varies between mélange and non-mélange channels. We then ask whether lithologically controlled boulder delivery to rivers is a possible cause of steepness variations. We find that mélange channels are steeper than Coastal Belt channels but not steeper than schist channels. Though channels in all units steepen with increasing proximity to mapped hillslope failures, absolute steepness values near failures are much higher (∼2×) in the mélange and schist than in Coastal Belt units. This could reflect reduced rock erodibility or increased erosion rates in the mélange and schist, or disproportionate steepening due to enhanced boulder delivery by hillslope failures in those units. To investigate the possible influence of lithology-dependent boulder delivery, we map boulders at failure toes in the three units. We find that boulder size, frequency, and concentration are greatest in mélange channels and that Coastal Belt channels have the lowest concentrations. Using our field data to parameterize a mathematical model for channel slope response to boulder delivery, we find that the modeled influence of boulders in the mélange could be strong enough to account for some observed differences in channel steepness between lithologies. At the landscape scale, we lack the data to fully disentangle boulder-induced steepening from that due to spatially varying erosion rates and in situ rock erodibility. However, our boulder mapping and modeling results suggest that lithology-dependent boulder delivery to channels could retard landscape adjustment to tectonic forcing in the mélange and potentially also in the schist. Boulder delivery may modulate landscape response to tectonics and help preserve high-elevation, low-relief topography at the Mendocino triple junction and elsewhere.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Shamsollah Ayoubi ◽  
Nafiseh Sadeghi ◽  
Farideh Abbaszadeh Afshar ◽  
Mohammad Reza Abdi ◽  
Mojtaba Zeraatpisheh ◽  
...  

Abstract Background As one of the main components of land-use change, deforestation is considered the greatest threat to global environmental diversity with possible irreversible environmental consequences. Specifically, one example could be the impacts of land-use changes from oak forests into agricultural ecosystems, which may have detrimental impacts on soil mobilization across hillslopes. However, to date, scarce studies are assessing these impacts at different slope positions and soil depths, shedding light on key geomorphological processes. Methods In this research, the Caesium-137 (137Cs) technique was applied to evaluate soil redistribution and soil erosion rates due to the effects of these above-mentioned land-use changes. To achieve this goal, we select a representative area in the Lordegan district, central Iran. 137Cs depth distribution profiles were established in four different hillslope positions after converting natural oak forests to rainfed farming. In each hillslope, soil samples from three depths (0–10, 10–20, and 20–50 cm) and in four different slope positions (summit, shoulder, backslope, and footslope) were taken in three transects of about 20 m away from each other. The activity of 137Cs was determined in all the soil samples (72 soil samples) by a gamma spectrometer. In addition, some physicochemical properties and the magnetic susceptibility (MS) of soil samples were measured. Results Erosion rates reached 51.1 t·ha− 1·yr− 1 in rainfed farming, whereas in the natural forest, the erosion rate was 9.3 t·ha− 1·yr− 1. Magnetic susceptibility was considerably lower in the cultivated land (χhf = 43.5 × 10− 8 m3·kg− 1) than in the natural forest (χhf = 55.1 × 10− 8 m3·kg− 1). The lower soil erosion rate in the natural forest land indicated significantly higher MS in all landform positions except at the summit one, compared to that in the rainfed farming land. The shoulder and summit positions were the most erodible hillslope positions in the natural forest and rainfed farming, respectively. Conclusions We concluded that land-use change and hillslope positions played a key role in eroding the surface soils in this area. Moreover, land management can influence soil erosion intensity and may both mitigate and amplify soil loss.


2021 ◽  
pp. 120368
Author(s):  
Tebogo V. Makhubela ◽  
Jan D. Kramers ◽  
Sibusiso M. Konyana ◽  
Herman S. van Niekerk ◽  
Stephan R. Winkler

2021 ◽  
Author(s):  
Dante Föllmi ◽  
Jantiene Baartman ◽  
João Pedro Nunes ◽  
Akli Benali

<p><strong>Abstract</strong></p><p>Wildfires have become an increasing threat for Mediterranean ecosystems, due to increasing climate change induced wildfire activity and changing land management practices. Apart from the initial risk, fire can alter the soil in various ways depending on different fire severities and thus post-fire erosion processes are an important component in assessing wildfires’ negative effects. Recent post-fire erosion (modelling) studies often focus on a short time window and lack the attention for sediment dynamics at larger spatial scales. Yet, these large spatial and temporal scales are fundamental for a better understanding of catchment sediment dynamics and long-term destructive effects of multiple fires on post-fire erosion processes. In this study the landscape evolution model LAPSUS was used to simulate erosion and deposition in the 404 km<sup>2</sup> Águeda catchment in northern-central Portugal over a 41 year (1979-2020) timespan. To include variation in fire severity and its impact on the soil four burnt severity classes, represented by the difference Normalized Burn Ratio (dNBR), were parameterized. Although model calibration was difficult due to lack of spatial and temporal measured data, the results show that average post-fire net erosion rates were significantly higher in the wildfire scenarios (5.95 ton ha<sup>-1</sup> yr<sup>-1</sup>) compared to those of a non-wildfire scenario (0.58 ton ha<sup>-1</sup> yr<sup>-1</sup>). Furthermore, erosion values increased with a higher level of burnt severity and multiple fires increased the overall sediment build-up in the catchment, fostering an increase in background sediment yield. Simulated erosion patterns showed great spatial variability with large deposition and erosion rates inside streams. Due to this variability, it was difficult to identify land uses that were most sensitive for post-fire erosion, because some land-uses were located in more erosion-sensitive areas (e.g. streams, gullies) or were more affected by high burnt severity levels than others. Despite these limitations, LAPSUS performed well on addressing spatial sediment processes and has the ability to contribute to pre-fire management strategies. For instance, the percentage soil loss map (i.e. comparison of erosion and soil depth maps) could identify locations at risk.</p>


Koedoe ◽  
1997 ◽  
Vol 40 (2) ◽  
Author(s):  
C.M. Smit ◽  
G.J. Bredenkamp ◽  
N. Van Rooyen ◽  
A.E. Van Wyk ◽  
J.M. Combrinck

A vegetation survey of the Witbank Nature Reserve, comprising 847 hectares, was conducted. Phytosociological data were used to identify plant communities, as well as to determine alpha and beta diversities. Eleven plant communities were recognised, two of these are subdivided into sub- communities, resulting in 14 vegetation units. These communities represent four main vegetation types, namely grassland, woodland, wetland and disturbed vegetation. Grassland communities have the highest plant diversity and wetland vegetation the lowest. Floristic composition indicates that the vegetation of the Rocky Highveld Grassland has affinities to the grassland and savanna biomes and also to the Afromontane vegetation of the Great Escarpment. An ordination scatter diagram shows the distribution of the 14 plant communities or sub-communities along a soil moisture gradient, as well as along a soil depth/surface rock gradient. The sequence of communities along the soil moisture gradient is used for calculating beta-diversity indices. It is concluded that the relatively small size of the Witbank Nature Reserve is unlikely to have significant negative effects on the phytodiversity of the various plant communities. This nature reserve is therefore of considerable importance in conserving a representative sample of the Rocky Highveld Grassland.


2011 ◽  
Vol 20 (4) ◽  
pp. 540 ◽  
Author(s):  
T. G. O'Connor ◽  
C. M. Mulqueeny ◽  
P. S. Goodman

Fire pattern is predicted to vary across an African savanna in accordance with spatial variation in rainfall through its effects on fuel production, vegetation type (on account of differences in fuel load and in flammability), and distribution of herbivores (because of their effects on fuel load). These predictions were examined for the 23 651-ha Mkuzi Game Reserve, KwaZulu-Natal, based on a 37-year data set. Fire return period varied from no occurrence to a fire every 1.76 years. Approximately 75% of the reserve experienced a fire approximately every 5 years, 25% every 4.1–2.2 years and less than 1% every 2 years on average. Fire return period decreased in relation to an increase in mean annual rainfall. For terrestrial vegetation types, median fire return periods decreased with increasing herbaceous biomass, from forest that did not burn to grasslands that burnt every 2.64 years. Fire was absent from some permanent wetlands but seasonal wetlands burnt every 5.29 years. Grazer biomass above 0.5 animal units ha–1 had a limiting influence on the maximum fire frequency of fire-prone vegetation types. The primary determinant of long-term spatial fire patterns is thus fuel load as determined by mean rainfall, vegetation type, and the effects of grazing herbivores.


2017 ◽  
Author(s):  
Selene B. González-Morales ◽  
Alex Mayer ◽  
Neptalí Ramírez-Marcial

Abstract. The physical aspects and knowledge of soil erosion in six communities in rural Chiapas, Mexico were assessed. Average erosion rates estimated with the RUSLE model ranged from 200 to 1,200 ha−1 yr−1. Most erosion rates are relatively high due to steep slopes, sandy soils and bare land cover. The lowest rates occur where corn is cultivated for much of the year and slopes are relatively low. The results of a knowledge, attitudes and practices (KAP) survey showed that two-thirds of respondents believed that the major cause of soil erosion was hurricanes or rainfall and only 14 % of respondents identified human activities as causes of erosion. Forty-two percent of respondents indicated that the responsibility for solving soil erosion problems lies with government, as opposed to 26 % indicating that the community is responsible. More than half of respondents believed that reforestation is a viable option for reducing soil erosion, but only a third of respondents were currently applying reforestation practices and another one-third indicated that they were not following any conservation practices. The KAP results were used to assess the overall level of knowledge and interest in soil erosion problems and their solutions by compiling negative responses. The community of Barrio Vicente Guerrero may be most vulnerable to soil erosion, since it had the highest average negative response and the second highest soil erosion rate. However, Poblado Cambil had the highest estimated soil erosion rate and a relatively low average negative response rate, suggesting that soil conservation efforts should be prioritized for this community. We conclude that as long as the economic and productive needs of the communities are not solved simultaneously, the risk of soil erosion will increase in the future, which threatens the survival of these communities.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Veera Narayana Balabathina ◽  
R. P. Raju ◽  
Wuletaw Mulualem ◽  
Gedefaw Tadele

Abstract Background Soil erosion is one of the major environmental challenges and has a significant impact on potential land productivity and food security in many highland regions of Ethiopia. Quantifying and identifying the spatial patterns of soil erosion is important for management. The present study aims to estimate soil erosion by water in the Northern catchment of Lake Tana basin in the NW highlands of Ethiopia. The estimations are based on available data through the application of the Universal Soil Loss Equation integrated with Geographic Information System and remote sensing technologies. The study further explored the effects of land use and land cover, topography, soil erodibility, and drainage density on soil erosion rate in the catchment. Results The total estimated soil loss in the catchment was 1,705,370 tons per year and the mean erosion rate was 37.89 t ha−1 year−1, with a standard deviation of 59.2 t ha−1 year−1. The average annual soil erosion rare for the sub-catchments Derma, Megech, Gumara, Garno, and Gabi Kura were estimated at 46.8, 40.9, 30.9, 30.0, and 29.7 t ha−1 year−1, respectively. Based on estimated erosion rates in the catchment, the grid cells were divided into five different erosion severity classes: very low, low, moderate, high and extreme. The soil erosion severity map showed about 58.9% of the area was in very low erosion potential (0–1 t ha−1 year−1) that contributes only 1.1% of the total soil loss, while 12.4% of the areas (36,617 ha) were in high and extreme erosion potential with erosion rates of 10 t ha−1 year−1 or more that contributed about 82.1% of the total soil loss in the catchment which should be a high priority. Areas with high to extreme erosion severity classes were mostly found in Megech, Gumero and Garno sub-catchments. Results of Multiple linear regression analysis showed a relationship between soil erosion rate (A) and USLE factors that soil erosion rate was most sensitive to the topographic factor (LS) followed by the support practice (P), soil erodibility (K), crop management (C) and rainfall erosivity factor (R). Barenland showed the most severe erosion, followed by croplands and plantation forests in the catchment. Conclusions Use of the erosion severity classes coupled with various individual factors can help to understand the primary processes affecting erosion and spatial patterns in the catchment. This could be used for the site-specific implementation of effective soil conservation practices and land use plans targeted in erosion-prone locations to control soil erosion.


1991 ◽  
Vol 18 (2) ◽  
pp. 125 ◽  
Author(s):  
AF Bennett ◽  
LF Lumsden ◽  
JSA Alexander ◽  
PE Duncan ◽  
PG Johnson ◽  
...  

A total of 1487 observations of nine species of arboreal mammal, Acrobates pygmaeus, Phascolarctos cinereus, Petauroides volans, Petaurus australis, P. breviceps, P. norfolcensis, Pseudocheirusperegrinus, Trichosurus caninus and T. vulpecula, were made during surveys of the vertebrate fauna of northeastern Victoria. Habitat use by each species was examined in relation to eight forest types that occur along an environmental gradient ranging from sites at high elevation with a high annual rainfall, to sites on the dry inland and riverine plains. Arboreal mammals were not evenly distributed between forest types. Three species (P. australis, P. volans and T. caninus) were mainly associated with moist tall forests; two species (P. norfolcensis and T. vulpecula) were primarily associated with drier forests and woodlands of the foothills; the remaining three species (A. pygmaeus, P. breviceps and P. peregrinus) occurred widely throughout the forests. The composition of the arboreal mammal assemblage changed along the environmental gradient, but species displayed gradual changes in abundance with forest type rather than marked discontinuities in distributional pattern. The highest overall frequencies of occurrence of arboreal mammals were in forests typically dominated by a mixture of eucalypt species. The position at first sighting of an animal, and the relative height in the forest stratum, were used to describe the micro-habitats utilised. In general, the microhabitats occupied by each species are consistent with the distribution of their known food resources.


Sign in / Sign up

Export Citation Format

Share Document