Demonstration of 11-directional muography in Omuro-yama Scoria cone, Izu, Japan

Author(s):  
Shogo Nagahara ◽  
Seigo Miyamoto ◽  
Kunihiro Morishima ◽  
Toshiyuki Nakano ◽  
Masato Koyama ◽  
...  

<p>Muography is the method of determining inner bulk density structures of volcano by using cosmic-ray muons. When we get muography image from one direction, there is no spatial resolution along muon path. However, by observing from multiple directions, three-dimensional density structure can be obtained. In recent years, three-dimensional density reconstruction using two or three muographic images has been performed (Tanaka et al., 2010, Rosas-Carbajal et al., 2017), but they obtained three-dimensional density structure with only several hundreds of meters spatial resolution due to lack of information. To improve the spatial resolution, we suggested “omni-directional muography”, putting ten or more observation points to surround the volcano (Nagahara and Miyamoto, 2018), and we estimated its feasibility by simulation. On the other hand, in recent years, detectors for muography have become larger (Morishima et al., 2018, Olah et al., 2019), and a detector necessary for omni-directional muography can be prepared. Therefore, we demonstrated omni-directional muography in Omuro-yama Scoria cone, Izu, Japan.</p><p>Omuro-yama is a scoria cone formed by a single eruption. The mountain baseline diameter is about 1 kilometer and the height from base is 300 meters. The eruption has been investigated by sediment surveys (Koyano et al.,1996). This mountain has many advantages that are suitable for omnidirectional muography. 1) no mountains around Omuroyama, so no contamination of muon path except in the Omuroyama body. 2) easy to access the detector sites, 3) enough statistics of penetrating muons because of size. We started observing Omuro-yama in 2018. In 2018, we observed for two months from three directions using a 0.01 square meter emulsion detector. In 2019, we performed a three-month observation from eight directions using a 0.02 square meter emulsion detector. As a result of preliminary three-dimensional density reconstruction using the analysis method of Nishiyama et al. (2014), a region with a low density over 200 m in diameter was found under the crater. Currently, we are considering this result carefully. We plan to observe from 30 directions by 2021, including 11 points.</p><p>In this presentation, we report the latest analysis results of observation results from 11 directions and future plan.</p>

2020 ◽  
Author(s):  
Seigo Miyamoto ◽  
Shogo Nagahara

<p>Muography is the technique to observe the inner density structure of volcano by using cosmic-ray muons. In previous study, three-dimensional density reconstruction was attempted by using muography data from multiple directions (Tanaka et al., 2010, Rosas-Carbajal et al., 2017), but they could only get a few hundred meters of spatial resolution. To improve the spatial resolution, Nagahara and Miyamoto (2018) suggested omni-directional muography, putting ten or more observation points to surround the volcano.</p><p>  There are two types of three-dimensional density reconstruction methods from omni-directional muography observations, the linear inversion method (Rosas-Carbajal et al., 2017) and the filtered back projection (FBP) method (Nagahara and Miyamoto, 2018). The former is applicable even when the number of observation points is small, but requires many arbitrary parameters, while the latter has the characteristic that no arbitrary parameters are required but a certain number of observation points is required.</p><p>In this presentation, we show the results of a comparison between the two methods in simulation.</p>


2018 ◽  
Author(s):  
Shogo Nagahara ◽  
Seigo Miyamoto

Abstract. This study is the first trial to apply the method of filtered backprojection (FBP) method to reconstruct three-dimensional (3D) bulk density images via cosmic-ray muons, We also simulated three-dimensional reconstruction image with dozens of muon radiographies using FBP method for a volcano and evaluated its practicality. FBP method is widely used in X-ray and CT image reconstruction but has not been used in the field of muon radiography. One of the merits to use FBP method instead of ordinary inversion method is that it doesn't require an initial model, while ordinary inversion analysis need an initial model. We also added new approximation factors by using data on mountain topography into existing formulas to successfully reduce systematic reconstruction errors. From a volcanic perspective, airborne radar is commonly used to measure and analyze mountain topography. We tested the performance and applicability to the model of Omuroyama, a monogenetic scoria cone located in Shizuoka, Japan. As a result, it was revealed that the density difference between the original and reconstructed images depended on the number of observation points and the accidental error caused by muon statistics depended on the multiplication of total effective area and exposure period. Combining above all things, we established how to evaluate an observation plan for volcano using dozens of muon radiographies.


2018 ◽  
Vol 7 (4) ◽  
pp. 307-316 ◽  
Author(s):  
Shogo Nagahara ◽  
Seigo Miyamoto

Abstract. This study is the first trial to apply the method of filtered back projection (FBP) to reconstruct three-dimensional (3-D) bulk density images via cosmic-ray muons. We also simulated three-dimensional reconstruction image with dozens of muon radiographies for a volcano using the FBP method and evaluated its practicality. The FBP method is widely used in X-ray and CT image reconstruction but has not been used in the field of muon radiography. One of the merits of using the FBP method instead of the ordinary inversion method is that it does not require an initial model, while ordinary inversion analysis needs an initial model. We also added new approximation factors by using data on mountain topography in existing formulas to successfully reduce systematic reconstruction errors. From a volcanic perspective, lidar is commonly used to measure and analyze mountain topography. We tested the performance and applicability to a model of Omuroyama, a monogenetic scoria cone located in Shizuoka, Japan. As a result, it was revealed that the density difference between the original and reconstructed images depended on the number of observation points and the accidental error caused by muon statistics depended on the multiplication of total effective area and exposure period. Combining all of the above, we established how to evaluate an observation plan for volcanos using dozens of muon radiographies.


2021 ◽  
Vol 40 (3) ◽  
Author(s):  
Bo Hou ◽  
Yongbin Ge

AbstractIn this paper, by using the local one-dimensional (LOD) method, Taylor series expansion and correction for the third derivatives in the truncation error remainder, two high-order compact LOD schemes are established for solving the two- and three- dimensional advection equations, respectively. They have the fourth-order accuracy in both time and space. By the von Neumann analysis method, it shows that the two schemes are unconditionally stable. Besides, the consistency and convergence of them are also proved. Finally, numerical experiments are given to confirm the accuracy and efficiency of the present schemes.


1993 ◽  
Vol 59 (563) ◽  
pp. 1697-1701 ◽  
Author(s):  
Tsuyoshi Nishiwaki ◽  
Atsushi Yokoyama ◽  
Zen'ichiro Maekwa ◽  
Hiroyuki Hamada ◽  
Yoshinori Maekawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document