Alternatives to Glyphosate in conservation agriculture: effects on carbon sequestration in a field experiment in northern Italy

Author(s):  
alessia perego ◽  
marco acutis ◽  
calogero schillaci

<p>Conservative Agriculture (CA) practices are recognized to enhance soil organic carbon stock and in turn to mitigate the effect of climate change. One of the CA principles is to integrate cover crops (CC) into the cropping systems. The termination of CC before the cash crop sowing and the weeds control are the most critical aspects to manage in the CA. The technique currently adopted by farmers for the termination of CC implies the use of Glyphosate. However, the European Commission is currently discussing the possibility of banning the use of this herbicide due to the negative effects on human health and the agro-environment. The disk harrow (DH) or the roller-crimper (RC) can be adopted in CA as an alternative to the use of Glyphosate for the devitalization of CC, their incorporation into the soil (in the case of the disk harrow), and the reduction of weed pressure on the subsequent cash crop.</p><p>From November 2017 to October 2019, soil organic carbon (SOC, g kg<sup>-1</sup>) and crop biomass production were observed in a 2-year field experiment located in Lodi (northern Italy), in which minimum tillage (MT) has been applied for the last 5 years. The soil was loamy and SOC was 16.2 g kg<sup>-1</sup> at the beginning of the experiment. The winter CC was barley (from November to May) and the cash crop was soybean (from June to October). The experiment consisted in three treatments replied for two consecutive years in a randomized block design: Glyphosate spray + DH + sowing + hoeing (MT-GLY); DH + sowing + hoeing (MT-ORG); RC + sod seeding (NT-ORG).</p><p>At the end of 2019, SOC resulted in a higher increase in MT-GLY (+15%) and in MT-ORG (+14%) than in NT-ORG (+6%; p<0.01). This was due to the fact that CC litter in NT-ORG was not in direct contact with soil particles and the process of immobilization was lower than in the other treatments.</p><p>Moreover, the increase in SOC resulted positively correlated to the CC biomass (2018+2019), which was significantly lower in NT-ORG. In particular, no differences of soybean and CC between the three treatments were observed at the end of 2018, but MT-GLY resulted in significantly higher CC and soybean biomass at the end of the second year (+32%, p<0.01). MT-GLY allows to stock more carbon via photosynthesis that in turn results in higher SOC content.</p><p>However, if we consider the tractor fuel consumption (for Glyphosate spray, DH, RC, hoeing), along with the biomass production, the carbon sequestration did not vary between the three treatments.</p><p>Further studies are needed for the definition of optimized field management practices to reduce the passage of machinery while increasing crop production and SOC.</p>

Author(s):  
Sumit Mukati ◽  
Y. M. Kool ◽  
Deepak Thakur ◽  
Deepak Singune

Present field experiment was conducted at farmer’s field in Ringondiya village, Madhya Pradesh during rabi season 2018-19 to study the effect of integrated nutrient management practices on performance of chickpea, basic soil properties and nutrient availability. The performance of chickpea (cv. JG-322) was evaluated under seven treatments viz., T1-Control, T2-100% N:P:K (20:50:20), T3-50% N:P:K + FYM @5 t ha-1, T4-50% N:P:K + vermicomposting @2 t ha-1, T5-50% N:P:K + PSB @4 kg ha-1, T6-50% N:P:K + FYM @5 t ha-1 + PSB @4 kg ha-1 and T7-50% N:P:K + vermicomposting @2 t ha-1 +PSB @4 kg ha-1 replicated thrice in a randomized block design. The grain yield, straw yield and harvest index of chickpea were determined at harvest. Similarly, the soil pH, electrical conductivity, soil organic carbon and soil available nutrients (N, P and K) were also determined in post harvest soil samples. The results revealed that the integrated nutrient management practice significantly improved the performance of chickpea. The soil organic carbon and available nutrients were also found increased under INM practices.


2017 ◽  
Vol 2 (2) ◽  
pp. 68
Author(s):  
Bruno Henrique Martins ◽  
Cezar Francisco Araujo Junior ◽  
Mario Miyazawa ◽  
Karen Mayara Vieira ◽  
Carlos Alberto Hamanaka ◽  
...  

Weed control methods in coffee crops can significantly influence carbon (C) stocks of soil humic substances. The aim of this study was to evaluate C stocks in an experimental coffee crop submitted to conservation agriculture for weed control between coffee rows. The study was carried out in a very clayey Dystroferric Red Latosol, Londrina, Paraná state (23°21’30” S; 51°10’17” W), cultivated with cultivar Mundo Novo IAC 379-19. In 2008, the experiment was established as randomized block design with four replicates within split-split plot scheme. Seven weed control methods between coffee rows were considered (hand weeding; portable mechanical mower; herbicides application; two cover crops; weed check and spontaneous). In September 2013, coffee shrub pruning was conducted and residues were distributed along inter rows. The weed control methods were considered as the main-plot factor and sampling period (March 2014 and February 2015) as the split-plot. Soil samples were collected at the center of the inter rows at four depth increments. C stocks evaluation included total organic carbon determination by chromic acid wet oxidation. Humic substances were characterized by UV-Vis spectroscopy. Most of the considered weed control methods did not affect organic carbon storage in 0 – 40 cm layer, nevertheless led to increase at topsoil. In 2015, the humin fraction C stock was 54 % higher at superficial layer than subsequent depth, presenting 39 % average increase at the 2014/2015 interval. Although C stocks from humic and fulvic acids did not vary, more conjugated/condensed characteristic for the fulvic fraction was observed.


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 305 ◽  
Author(s):  
Noppol Arunrat ◽  
Nathsuda Pumijumnong ◽  
Sukanya Sereenonchai ◽  
Uthai Chareonwong

Understanding the effect of the environment, crop types, and land management practices on the organic carbon sequestration of top soil is crucial for adopting management strategies in highland agricultural areas. The objectives of this study are: (1) to estimate top soil organic carbon density (SOCD) of different crop types and (2) to analyze the factors controlling top SOCD in highland agricultural areas. The top soil layers from 0 to 30 cm depths were collected from the Mae Chaem basin, Northern Thailand. The results showed that the highest top SOCD was found soil used for growing upland rice, which contained an average of 58.71 Mg C ha−1. A significant difference between the top SOCD was detected between areas where minimum tillage and conventional tillage of various crops, with average of values 59.17 and 41.33 Mg C ha−1, respectively, for areas growing strawberries; 61.14 and 37.58 Mg C ha−1, respectively, for cabbage, and 71.15 and 39.55 Mg C ha−1, respectively, for maize. At higher elevation, the top SOCD was high, which may be due to high clay content and low temperature. Increased use of chemical fertilizers lead to increases in top SOCD, resulting in increased crop yields. Elevation, bulk density, N and K2O fertilizers were the main factors controlling the top SOCD at all sites.


2013 ◽  
Vol 64 (8) ◽  
pp. 799 ◽  
Author(s):  
N. R. Hulugalle ◽  
T. B. Weaver ◽  
L. A. Finlay ◽  
V. Heimoana

Long-term studies of soil organic carbon dynamics in two- and three-crop rotations in irrigated cotton (Gossypium hirsutum L.) based cropping systems under varying stubble management practices in Australian Vertosols are relatively few. Our objective was to quantify soil organic carbon dynamics during a 9-year period in four irrigated, cotton-based cropping systems sown on permanent beds in a Vertosol with restricted subsoil drainage near Narrabri in north-western New South Wales, Australia. The experimental treatments were: cotton–cotton (CC); cotton–vetch (Vicia villosa Roth. in 2002–06, Vicia benghalensis L. in 2007–11) (CV); cotton–wheat (Triticum aestivum L.), where wheat stubble was incorporated (CW); and cotton–wheat–vetch, where wheat stubble was retained as in-situ mulch (CWV). Vetch was terminated during or just before flowering by a combination of mowing and contact herbicides, and the residues were retained as in situ mulch. Estimates of carbon sequestered by above- and below-ground biomass inputs were in the order CWV >> CW = CV > CC. Carbon concentrations in the 0–1.2 m depth and carbon storage in the 0–0.3 and 0–1.2 m depths were similar among all cropping systems. Net carbon sequestration rates did not differ among cropping systems and did not change significantly with time in the 0–0.3 m depth, but net losses occurred in the 0–1.2 m depth. The discrepancy between measured and estimated values of sequestered carbon suggests that either the value of 5% used to estimate carbon sequestration from biomass inputs was an overestimate for this site, or post-sequestration losses may have been high. The latter has not been investigated in Australian Vertosols. Future research efforts should identify the cause and quantify the magnitude of these losses of organic carbon from soil.


2019 ◽  
Vol 652 ◽  
pp. 300-306 ◽  
Author(s):  
Agata Novara ◽  
Mario Minacapilli ◽  
Antonino Santoro ◽  
Jesus Rodrigo-Comino ◽  
Alessandra Carrubba ◽  
...  

2014 ◽  
Vol 11 (13) ◽  
pp. 3495-3503 ◽  
Author(s):  
X. F. Chang ◽  
X. X. Zhu ◽  
S. P. Wang ◽  
S. J. Cui ◽  
C. Y. Luo ◽  
...  

Abstract. Grassland soil organic carbon (SOC) is sensitive to anthropogenic activities. Increased anthropogenic disturbance related to overgrazing has led to widespread alpine grassland degradation on the Tibetan Plateau. The degraded grasslands are considered to have great potential for carbon sequestration after adoption of improved management practices. Here, we calibrated and employed the Century model to investigate the effects of overgrazing and improved managements on the SOC dynamics in alpine meadows. We calibrated the Century model against plant productivity at the Haibei Research Station. SOC stocks for validation were obtained in 2009–2010 from degraded alpine meadows in two communes. We found that Century model can successfully capture grassland SOC changes. Overall, our simulation suggests that degraded alpine meadow SOC significantly increased with the advent of restoration management from 2011 to 2030. Carbon sequestration rates ranged between 0.04 Mg C ha−1 yr−1 in lightly degraded winter grazing grasslands and 2.0 Mg C ha−1 yr−1 in moderately degraded summer grazing grasslands. Our modelling work also predicts that improve management in degraded Tibetan grasslands will contribute to an annual carbon sink of 0.022–0.059 Pg C yr−1. These results imply that restoration of degraded grasslands in the Tibetan Plateau has great potential for soil carbon sequestration to mitigate greenhouse gases.


Sign in / Sign up

Export Citation Format

Share Document