Spatiotemporal response of an Alpine braided river reach to snow melt and flood events

Author(s):  
Maarten Bakker ◽  
Florent Gimbert ◽  
Clément Misset ◽  
Laurent Borgniet ◽  
Alain Recking

<p>Alpine environments are responding to accelerated climate warming through the release and mobilization of large amounts of unconsolidated sediment. Sediment fluxes delivered to Alpine streams may be buffered, filtered and/or modulated as they pass through braided river reaches, which play a key role in the downstream transfer and dynamics of bed material. The functioning of these braided reaches is however still poorly understood, particularly during high magnitude events whose effects are very difficult to monitor but play an ever more prominent role in river system evolution.</p><p>In this study, we investigate the transfer of bedload material and river bed morphological change in a braided reach of the Séveraisse River (France), over the course of the melt season and two large flood events with an estimated return period of 5 and 50 years. To quantify braided reach dynamics, a multi-physical approach is employed that combines both temporally and spatially resolved techniques. We use bank-side geophones and locally derived parameters that describe seismic wave propagation in the subsurface to accurately quantify bedload transport and gain a unique insight in its temporal dynamics, particularly during the flood events. River bed elevation changes are determined from intermittent UAV-based LiDAR and photogrammetric acquisition. These are complemented with hourly (daytime) time-lapse images that register planform changes during the flood events.</p><p>Our results show strongly contrasting morphodynamic behavior with different flow conditions. During ‘normal’ bedload transport conditions driven by annual snow-melt, channel aggradation occurs leading to progressively lower bedload export from the reach for a given discharge. During the flood with a 5 year return period, which occurred at the end of the melt season, the braided riverbed morphology is rearranged and net sediment export took place. Most interestingly, in the autumn an extreme flood event led to the development of a single channel, meandering planform with significant outer bend erosion on alternating banks. Although this morphological change may be only temporary, i.e. a braided configuration may be expected to be gradually re-instated, it has important implications on the general functioning and morphological evolution of the reach and the downstream transfer of sediment.</p>

2015 ◽  
Vol 3 (4) ◽  
pp. 577-585 ◽  
Author(s):  
P. Leduc ◽  
P. Ashmore ◽  
J. T. Gardner

Abstract. A physical scale model of a gravel-bed braided river was used to measure vertical grain size sorting in the morphological active layer aggregated over the width of the river. This vertical sorting is important for analyzing braided river sedimentology, for numerical modeling of braided river morphodynamics, and for measuring and predicting bedload transport rate. We define the morphological active layer as the bed material between the maximum and minimum bed elevations at a point over extended time periods sufficient for braiding processes to rework the river bed. The vertical extent of the active layer was measured using 40 hourly high-resolution DEMs (digital elevation models) of the model river bed. An image texture algorithm was used to map bed material grain size of each DEM. Analysis of the 40 DEMs and texture maps provides data on the geometry of the morphological active layer and variation in grain size in three dimensions. By normalizing active layer thickness and dividing into 10 sublayers, we show that all grain sizes occur with almost equal frequency in all sublayers. Occurrence of patches and strings of coarser (or finer) material relates to preservation of particular morpho-textural features within the active layer. For numerical modeling and bedload prediction, a morphological active layer that is fully mixed with respect to grain size is a reliable approximation.


Mycorrhiza ◽  
2021 ◽  
Author(s):  
P. W. Thomas

AbstractVery little is known about the impact of flooding and ground saturation on ectomycorrhizal fungi (EcM) and increasing flood events are expected with predicted climate change. To explore this, seedlings inoculated with the EcM species Tuber aestivum were exposed to a range of flood durations. Oak seedlings inoculated with T. aestivum were submerged for between 7 and 65 days. After a minimum of 114-day recovery, seedling growth measurements were recorded, and root systems were destructively sampled to measure the number of existing mycorrhizae in different zones. Number of mycorrhizae did not display correlation with seedling growth measurements. Seven days of submersion resulted in a significant reduction in mycorrhizae numbers and numbers reduced most drastically in the upper zones. Increases in duration of submersion further impacted mycorrhizae numbers in the lowest soil zone only. T. aestivum mycorrhizae can survive flood durations of at least 65 days. After flooding, mycorrhizae occur in higher numbers in the lowest soil zone, suggesting a mix of resilience and recovery. The results will aid in furthering our understanding of EcM but also may aid in conservation initiatives as well as providing insight for those whose livelihoods revolve around the collection of EcM fruiting bodies or cropping of the plant partners.


1982 ◽  
Vol 108 (10) ◽  
pp. 1208-1212
Author(s):  
John R. Crippen
Keyword(s):  

2016 ◽  
Vol 4 (1) ◽  
pp. 273-283 ◽  
Author(s):  
François Métivier ◽  
Olivier Devauchelle ◽  
Hugo Chauvet ◽  
Eric Lajeunesse ◽  
Patrick Meunier ◽  
...  

Abstract. The Bayanbulak Grassland, Tianshan, P. R. China, is located in an intramontane sedimentary basin where meandering and braided gravel-bed rivers coexist under the same climatic and geological settings. We report and compare measurements of the discharge, width, depth, slope and grain size of individual threads from these braided and meandering rivers. Both types of threads share statistically indistinguishable regime relations. Their depths and slopes compare well with the threshold theory, but they are wider than predicted by this theory. These findings are reminiscent of previous observations from similar gravel-bed rivers. Using the scaling laws of the threshold theory, we detrend our data with respect to discharge to produce a homogeneous statistical ensemble of width, depth and slope measurements. The statistical distributions of these dimensionless quantities are similar for braided and meandering threads. This suggests that a braided river is a collection of intertwined threads, which individually resemble those of meandering rivers. Given the environmental conditions in Bayanbulak, we furthermore hypothesize that bedload transport causes the threads to be wider than predicted by the threshold theory.


Huellas ◽  
2019 ◽  
Vol 23 (1) ◽  
pp. 11-26
Author(s):  
Volonte Antonela ◽  
◽  
Veronica Gil ◽  
◽  
◽  
...  
Keyword(s):  

Hydrobiologia ◽  
2008 ◽  
Vol 621 (1) ◽  
pp. 63-73 ◽  
Author(s):  
Christiane Ilg ◽  
Francis Foeckler ◽  
Oskar Deichner ◽  
Klaus Henle
Keyword(s):  

In Extremis ◽  
2010 ◽  
pp. 90-102
Author(s):  
Paul Dostal ◽  
Florian Imbery ◽  
Katrin Bürger ◽  
Jochen Seidel

2020 ◽  
Vol 11 (S1) ◽  
pp. 310-321 ◽  
Author(s):  
Mohamed El Mehdi Saidi ◽  
Tarik Saouabe ◽  
Abdelhafid El Alaoui El Fels ◽  
El Mahdi El Khalki ◽  
Abdessamad Hadri

Abstract Flood frequency analysis could be a tool to help decision-makers to size hydraulic structures. To this end, this article aims to compare two analysis methods to see how rare an extreme hydrometeorological event is, and what could be its return period. This event caused many deadly floods in southwestern Morocco. It was the result of unusual atmospheric conditions, characterized by a very low atmospheric pressure off the Moroccan coast and the passage of the jet stream further south. Assessment of frequency and return period of this extreme event is performed in a High Atlas watershed (the Ghdat Wadi) using historical floods. We took into account, on the one hand, flood peak flows and, on the other hand, flood water volumes. Statistically, both parameters are better adjusted respectively to Gamma and Log Normal distributions. However, the peak flow approach underestimates the return period of long-duration hydrographs that do not have a high peak flow, like the 2014 event. The latter is indeed better evaluated, as a rare event, by taking into account the flood water volumes. Therefore, this parameter should not be omitted in the calculation of flood probabilities for watershed management and the sizing of flood protection infrastructure.


Sign in / Sign up

Export Citation Format

Share Document