Reconstructing the distribution of surface mass balance over East Antarctica (DML) from 1850 to present day

Author(s):  
Nicolas Ghilain ◽  
Stéphane Vannitsem ◽  
Quentin Dalaiden ◽  
Hugues Goosse

<p>Over recent decades, the Antarctic Ice Sheet has witnessed large spatial variations at its surface through the surface mass balance (SMB). Since the complex Antarctic topography, working at high resolution is crucial to represent accurately the dynamics of SMB. While ice cores provide a mean to infer the SMB over centuries, the view is very spatially constrained. Global Climate models estimate the spatial distribution of SMB over centuries, but with a too coarse resolution with regards to the large variations due to local orographic effects. We have therefore explored a methodology to statistically downscale the SMB components from the climate model historical simulations (1850-present day). An analogue method is set up over a period of 30 years with the ERA-Interim reanalysis (1979-2010 AD) and associated with SMB components from the Regional Atmospheric Climate Model (RACMO) at 5 km spatial resolution over Dronning Maud in East Antarctica. The same method is then applied to the period from 1850 to present days using an ensemble of 10 simulations from the CESM2 model. This method enables to derive a spatial distribution of SMB. In addition, the changes in precipitation delivery mechanisms can be unveiled.</p>

2021 ◽  
Vol 14 (6) ◽  
pp. 3487-3510
Author(s):  
Charles Amory ◽  
Christoph Kittel ◽  
Louis Le Toumelin ◽  
Cécile Agosta ◽  
Alison Delhasse ◽  
...  

Abstract. Drifting snow, or the wind-driven transport of snow particles originating from clouds and the surface below and above 2 m above ground and their concurrent sublimation, is a poorly documented process on the Antarctic ice sheet, which is inherently lacking in most climate models. Since drifting snow mostly results from erosion of surface particles, a comprehensive evaluation of this process in climate models requires a concurrent assessment of simulated drifting-snow transport and the surface mass balance (SMB). In this paper a new version of the drifting-snow scheme currently embedded in the regional climate model MAR (v3.11) is extensively described. Several important modifications relative to previous version have been implemented and include notably a parameterization for drifting-snow compaction of the uppermost snowpack layer, differentiated snow density at deposition between precipitation and drifting snow, and a rewrite of the threshold friction velocity above which snow erosion initiates. Model results at high resolution (10 km) over Adélie Land, East Antarctica, for the period 2004–2018 are presented and evaluated against available near-surface meteorological observations at half-hourly resolution and annual SMB estimates. The evaluation demonstrates that MAR resolves the local drifting-snow frequency and transport up to the scale of the drifting-snow event and captures the resulting observed climate and SMB variability, suggesting that this model version can be used for continent-wide applications.


2020 ◽  
Author(s):  
Charles Amory ◽  
Christoph Kittel ◽  
Louis Le Toumelin ◽  
Cécile Agosta ◽  
Alison Delhasse ◽  
...  

Abstract. Drifting snow, or the wind-driven transport of snow particles and their concurrent sublimation, is a poorly documented process on the Antarctic ice sheet, inherently lacking in most climate models. Since drifting snow mostly results from erosion of surface particles, a comprehensive evaluation of this process in climate models requires a concurrent assessment of simulated transport and the surface mass balance (SMB). In this paper a new version of the drifting-snow scheme currently embedded in the regional climate model MAR (v3.11) is extensively described. Several important modifications relative to previous version have been implemented and include notably a parameterisation for drifting-snow compaction, differentiated snow density at deposition between precipitation and drifting snow, and a rewriting of the threshold friction velocity for snow erosion. Model results at high resolution (10 km) over Adelie Land, East Antarctica, for the period 2004–2018 are presented and evaluated against available near-surface meteorological observations at half-hourly resolution and annual SMB estimates. MAR resolves the local drifting-snow frequency and transport up the scale of the drifting-snow event and captures the resulting observed climate and SMB variability. This suggests that this model version can be used for continent-wide applications, and that the approach of drifting-snow physics as proposed in MAR can serve as a basis for implementation in earth system models.


2021 ◽  
pp. 1-13
Author(s):  
Bhanu Pratap ◽  
Rahul Dey ◽  
Kenichi Matsuoka ◽  
Geir Moholdt ◽  
Katrin Lindbäck ◽  
...  

Abstract The coastal Droning Maud Land in East Antarctica is characterized by small ice shelves with numbers of promontories and locally grounded isles, both called ice rises. These ice rises are typically dome-shaped and surface elevations are hundreds of meters above the surrounding ice shelves, which cause strong orographic effects on surface mass balance (SMB). We conducted shallow ice-penetrating radar sounding to visualize firn stratigraphy in the top 35 m over ~400 km of profiles across the Nivlisen Ice Shelf, and in a grid pattern over two adjacent ice rises (Djupranen and Leningradkollen). We tracked six reflectors (isochrones) and dated them using two ice cores taken at the ice rise summits, from which SMB over six periods in the past three decades was retrieved. The overall SMB pattern across the ice shelf remained similar for all periods; however, the eastwest contrast in SMB varies by a factor of 1.5–2 between the Leningradkollen and Djupranen grounding lines. The SMB patterns over the ice rises are more varied owing to complex interactions between topography, snowfall and wind. We use our results to evaluate the regional climate model RACMO2.3p2 in terms of the spatial SMB distribution and temporal changes over the ice shelf and ice rises at regional scale.


2016 ◽  
Vol 62 (236) ◽  
pp. 1037-1048 ◽  
Author(s):  
F. PARRENIN ◽  
S. FUJITA ◽  
A. ABE-OUCHI ◽  
K. KAWAMURA ◽  
V. MASSON-DELMOTTE ◽  
...  

ABSTRACTDocumenting past changes in the East Antarctic surface mass balance is important to improve ice core chronologies and to constrain the ice-sheet contribution to global mean sea-level change. Here we reconstruct past changes in the ratio of surface mass balance (SMB ratio) between the EPICA Dome C (EDC) and Dome Fuji (DF) East Antarctica ice core sites, based on a precise volcanic synchronization of the two ice cores and on corrections for the vertical thinning of layers. During the past 216 000 a, this SMB ratio, denoted SMBEDC/SMBDF, varied between 0.7 and 1.1, being small during cold periods and large during warm periods. Our results therefore reveal larger amplitudes of changes in SMB at EDC compared with DF, consistent with previous results showing larger amplitudes of changes in water stable isotopes and estimated surface temperature at EDC compared with DF. Within the last glacial inception (Marine Isotope Stages, MIS-5c and MIS-5d), the SMB ratio deviates by up to 0.2 from what is expected based on differences in water stable isotope records. Moreover, the SMB ratio is constant throughout the late parts of the current and last interglacial periods, despite contrasting isotopic trends.


2012 ◽  
Vol 6 (2) ◽  
pp. 255-272 ◽  
Author(s):  
M. M. Helsen ◽  
R. S. W. van de Wal ◽  
M. R. van den Broeke ◽  
W. J. van de Berg ◽  
J. Oerlemans

Abstract. It is notoriously difficult to couple surface mass balance (SMB) results from climate models to the changing geometry of an ice sheet model. This problem is traditionally avoided by using only accumulation from a climate model, and parameterizing the meltwater run-off as a function of temperature, which is often related to surface elevation (Hs). In this study, we propose a new strategy to calculate SMB, to allow a direct adjustment of SMB to a change in ice sheet topography and/or a change in climate forcing. This method is based on elevational gradients in the SMB field as computed by a regional climate model. Separate linear relations are derived for ablation and accumulation, using pairs of Hs and SMB within a minimum search radius. The continuously adjusting SMB forcing is consistent with climate model forcing fields, also for initially non-glaciated areas in the peripheral areas of an ice sheet. When applied to an asynchronous coupled ice sheet – climate model setup, this method circumvents traditional temperature lapse rate assumptions. Here we apply it to the Greenland Ice Sheet (GrIS). Experiments using both steady-state forcing and glacial-interglacial forcing result in realistic ice sheet reconstructions.


2020 ◽  
Author(s):  
Xavier Fettweis ◽  

<p>The Greenland Ice Sheet (GrIS) mass loss has been accelerating at a rate of about 20 +/- 10 Gt/yr<sup>2</sup> since the end of the 1990's, with around 60% of this mass loss directly attributed to enhanced surface meltwater runoff. However, in the climate and glaciology communities, different approaches exist on how to model the different surface mass balance (SMB) components using: (1) complex physically-based climate models which are computationally expensive; (2) intermediate complexity energy balance models; (3) simple and fast positive degree day models which base their inferences on statistical principles and are computationally highly efficient. Additionally, many of these models compute the SMB components based on different spatial and temporal resolutions, with different forcing fields as well as different ice sheet topographies and extents, making inter-comparison difficult. In the GrIS SMB model intercomparison project (GrSMBMIP) we address these issues by forcing each model with the same data (i.e., the ERA-Interim reanalysis) except for two global models for which this forcing is limited to the oceanic conditions, and at the same time by interpolating all modelled results onto a common ice sheet mask at 1 km horizontal resolution for the common period 1980-2012. The SMB outputs from 13 models are then compared over the GrIS to (1) SMB estimates using a combination of gravimetric remote sensing data from GRACE and measured ice discharge, (2) ice cores, snow pits, in-situ SMB observations, and (3) remotely sensed bare ice extent from MODerate-resolution Imaging Spectroradiometer (MODIS). Our results reveal that the mean GrIS SMB of all 13 models has been positive between 1980 and 2012 with an average of 340 +/- 112 Gt/yr, but has decreased at an average rate of -7.3 Gt/yr<sup>2</sup> (with a significance of 96%), mainly driven by an increase of 8.0 Gt/yr<sup>2</sup> (with a significance of 98%) in meltwater runoff. Spatially, the largest spread among models can be found around the margins of the ice sheet, highlighting the need for accurate representation of the GrIS ablation zone extent and processes driving the surface melt. In addition, a higher density of in-situ SMB observations is required, especially in the south-east accumulation zone, where the model spread can reach 2 mWE/yr due to large discrepancies in modelled snowfall accumulation. Overall, polar regional climate models (RCMs) perform the best compared to observations, in particular for simulating precipitation patterns. However, other simpler and faster models have biases of same order than RCMs with observations and remain then useful tools for long-term simulations. It is also interesting to note that the ensemble mean of the 13 models produces the best estimate of the present day SMB relative to observations, suggesting that biases are not systematic among models. Finally, results from MAR forced by ERA5 will be added in this intercomparison to evaluate the added value of using this new reanalysis as forcing vs the former ERA-Interim reanalysis (used in SMBMIP). </p>


2016 ◽  
Author(s):  
Michiel Helsen ◽  
Roderik Van de Wal ◽  
Thomas Reerink ◽  
Richard Bintanja ◽  
Marianne Sloth Madsen ◽  
...  

Abstract. The albedo of the surface of ice sheets changes as a function of time, due to the effects of deposition of new snow, ageing of dry snow, melting and runoff. Currently, the calculation of the albedo of ice sheets is highly parameterized within the Earth System Model EC-Earth, by taking a constant value for areas with thick perennial snow cover. This is one of the reasons that the surface mass balance (SMB) of the Greenland ice sheet (GrIS) is poorly resolved in the model. To improve this, eight snow albedo schemes are evaluated here. The resulting SMB is downscaled from the lower resolution global climate model topography to the higher resolution ice sheet topography of the GrIS, such that the influence of these different SMB climatologies on the long-term evolution of the GrIS is tested by ice sheet model simulations. This results in an optimised albedo parameterization that can be used in future EC-Earth simulations with an interactive ice sheet component.


2015 ◽  
Vol 11 (1) ◽  
pp. 377-405 ◽  
Author(s):  
F. Parrenin ◽  
S. Fujita ◽  
A. Abe-Ouchi ◽  
K. Kawamura ◽  
V. Masson-Delmotte ◽  
...  

Abstract. Documenting past changes in the East Antarctic surface mass balance is important to improve ice core chronologies and to constrain the ice sheet contribution to global mean sea level. Here we reconstruct the past changes in the ratio of surface mass balance (SMB ratio) between the EPICA Dome C (EDC) and Dome Fuji (DF) East Antarctica ice core sites, based on a precise volcanic synchronisation of the two ice cores and on corrections for the vertical thinning of layers. During the past 216 000 years, this SMB ratio, denoted SMBEDC/SMBDF, varied between 0.7 and 1.1, decreasing during cold periods and increasing during warm periods. While past climatic changes have been depicted as homogeneous along the East Antarctic Plateau, our results reveal larger amplitudes of changes in SMB at EDC compared to DF, consistent with previous results showing larger amplitudes of changes in water stable isotopes and estimated surface temperature at EDC compared to DF. Within interglacial periods and during the last glacial inception (Marine Isotope Stages, MIS-5c and MIS-5d), the SMB ratio deviates by up to 30% from what is expected based on differences in water stable isotope records. Moreover, the SMB ratio is constant throughout the late parts of the current and last interglacial periods, despite contrasting isotopic trends. These SMB ratio changes not closely related to isotopic changes are one of the possible causes of the observed gaps between the ice core chronologies at DF and EDC. Such changes in SMB ratio may have been caused by (i) climatic processes related to changes in air mass trajectories and local climate, (ii) glaciological processes associated with relative elevation changes, or (iii) a combination of climatic and glaciological processes, such as the interaction between changes in accumulation and in the position of the domes. Our inferred SMB ratio history has important implications for ice sheet modeling (for which SMB is a boundary condition) or atmospheric modeling (our inferred SMB ratio could serve as a test).


2021 ◽  
Author(s):  
Nicolaj Hansen ◽  
Peter L. Langen ◽  
Fredrik Boberg ◽  
Rene Forsberg ◽  
Sebastian B. Simonsen ◽  
...  

<p>The regional climate model HIRHAM5 developed for Greenland ice sheet applications has now been updated to also simulate Antarctic conditions. The outputs of the Antarctic runs have been used to force an offline subsurface model, to give estimates of the Antarctic surface mass balance (SMB) from 1980 to 2017.  Here, we compare two different versions of this offline subsurface model and evaluate how they simulate the physical properties of the uppermost part of the Antarctic firn pack. We find that the total calculated SMB of Antarctica is sensitive to the subsurface model variant. One model version uses an Eulerian framework, meaning that mass is advected through layers of fixed mass. When snowfall occurs at the surface, it is added to the first layer and an equal mass from that layer is shifted to the underlying layer. The same goes for each layer in the model column, and vice versa for mass loss. The other model version uses a Lagrangian framework for the layer development. Layers evolve through splitting and merging dynamically based on a number of weighted criteria.</p><p>The model simulations are validated against in situ observations of firn temperature and subsurface density. We find a mean temperature bias of 0.42-0.52 ℃  and a mean bias in modelled density of -24.0±18.4 kg m⁻³ and  -8.2±15.3 kg m⁻³ for layers less than 550 kg m⁻³ for the Eulerian and Lagrangian framework, respectively. For layers with a density above 550 kg m⁻³ the bais is -31.7±23.4 kg m⁻³ and -35.0±23.7 kg m⁻³  for the Eulerian and Lagrangian framework, respectively. The modelling framework also  affects the resulting  SMB. The Lagrangian framework,  estimates a total SMB  of 2473.5±114.4 Gt yr⁻¹ while the Eulerian framework results in slightly higher modelled SMB of  2564.8±113.7 Gt yr⁻¹. The majority for this difference in modelled SMB is pinpointed to the  ice shelves (the SMB over grounded ice only  differs  30 Gt yr⁻¹) and  demonstrates the importance of firn modelling in areas with substantial melt. Both the Eulerian and the Lagrangian SMB estimates are within each other's uncertainties and within range of other SMB studies. However, the Lagrangian version has the best statistics for modelling the densities. Given the importance of precipitation to Antarctic SMB, climate models must accurately simulate regional circulation patterns that modulate precipitation rates. We therefore investigate the relationship between SMB in individual drainage basins and the southern annular mode (SAM),  using Monte Carlo simulations. This shows a robust relationship between SAM and SMB in half of the basins (13 out of 27). In general, when SAM is positive there is a lower SMB over the Plateau and a higher SMB on the westerly side of the Antarctic Peninsula, and vice versa when the SAM is negative.</p>


2020 ◽  
Vol 14 (6) ◽  
pp. 1747-1762 ◽  
Author(s):  
Heiko Goelzer ◽  
Brice P. Y. Noël ◽  
Tamsin L. Edwards ◽  
Xavier Fettweis ◽  
Jonathan M. Gregory ◽  
...  

Abstract. Future sea-level change projections with process-based stand-alone ice sheet models are typically driven with surface mass balance (SMB) forcing derived from climate models. In this work we address the problems arising from a mismatch of the modelled ice sheet geometry with the geometry used by the climate model. We present a method for applying SMB forcing from climate models to a wide range of Greenland ice sheet models with varying and temporally evolving geometries. In order to achieve that, we translate a given SMB anomaly field as a function of absolute location to a function of surface elevation for 25 regional drainage basins, which can then be applied to different modelled ice sheet geometries. The key feature of the approach is the non-locality of this remapping process. The method reproduces the original forcing data closely when remapped to the original geometry. When remapped to different modelled geometries it produces a physically meaningful forcing with smooth and continuous SMB anomalies across basin divides. The method considerably reduces non-physical biases that would arise by applying the SMB anomaly derived for the climate model geometry directly to a large range of modelled ice sheet model geometries.


Sign in / Sign up

Export Citation Format

Share Document