Climate change impacts on wind power density over southeastern Mediterranean

Author(s):  
Chris G. Tzanis ◽  
Kostas Philippopoulos ◽  
Constantinos Cartalis ◽  
Konstantinos Granakis ◽  
Anastasios Alimissis ◽  
...  

<p>Energy production from the utilization of wind energy potential depends on the variability of the wind field as determined by the interaction of natural processes on different scales. Global climate change can cause alterations in the surface wind and thus it may affect the geographical distribution and the wind energy potential variability. Wind energy production is sensitive to wind speed changes, especially in the upper percentile of the wind speed distributions, where energy production is more effective. The importance of wind energy production changes is enhanced by the fact that wind energy investments are long-term and are characterized by high initial costs and low operating costs. In the present study, these changes are examined for the southeastern Mediterranean region, based on simulations of the Regional Climate Model ALADIN 5.2 extracted from the Med-CORDEX database for the climatic scenarios RCP4.5 and RCP8.5. The results indicate a wind power density increase over the Aegean Sea, the Ionian Sea, the Dardanelles and the Black Sea, with similar levels of increase for both climatic scenarios. In contrast, during the winter period there is a decline across the southeastern Mediterranean, which is more significant in the case of the RCP8.5 scenario. Finally, for most areas of eastern Greece, there is a reduction in the number of wind speed cases for both below and above cut-in and cut-out wind speeds, while there is an increase in the number of wind speed cases that wind turbines operate at their maximum power. The results are expected to reduce the uncertainty associated with the impact of climate change on wind energy production. </p>

2019 ◽  
Vol 38 (1) ◽  
pp. 175-200 ◽  
Author(s):  
Shafiqur Rehman ◽  
Narayanan Natarajan ◽  
Mangottiri Vasudevan ◽  
Luai M Alhems

Wind energy is one of the abundant, cheap and fast-growing renewable energy sources whose intensive extraction potential is still in immature stage in India. This study aims at the determination and evaluation of wind energy potential of three cities located at different elevations in the state of Tamil Nadu, India. The historical records of wind speed, direction, temperature and pressure were collected for three South Indian cities, namely Chennai, Erode and Coimbatore over a period of 38 years (1980-2017). The mean wind power density was observed to be highest at Chennai (129 W/m2) and lowest at Erode (76 W/m2) and the corresponding mean energy content was highest for Chennai (1129 kWh/m2/year) and lowest at Erode (666 kWh/m2/year). Considering the events of high energy-carrying winds at Chennai, Erode and Coimbatore, maximum wind power density were estimated to be 185 W/m2, 190 W/m2 and 234 W/m2, respectively. The annual average net energy yield and annual average net capacity factor were selected as the representative parameters for expressing strategic wind energy potential at geographically distinct locations having significant variation in wind speed distribution. Based on the analysis, Chennai is found to be the most suitable site for wind energy production followed by Coimbatore and Erode.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1846 ◽  
Author(s):  
Teklebrhan Negash ◽  
Erik Möllerström ◽  
Fredric Ottermo

This paper presents the wind energy potential and wind characteristics for 25 wind sites in Eritrea, based on wind data from the years 2000–2005. The studied sites are distributed all over Eritrea, but can roughly be divided into three regions: coastal region, western lowlands, and central highlands. The coastal region sites have the highest potential for wind power. An uncertainty, due to extrapolating the wind speed from the 10-m measurements, should be noted. The year to year variations are typically small and, for the sites deemed as suitable for wind power, the seasonal variations are most prominent in the coastal region with a peak during the period November–March. Moreover, Weibull parameters, prevailing wind direction, and wind power density recalculated for 100 m above ground are presented for all 25 sites. Comparing the results to values from the web-based, large-scale dataset, the Global Wind Atlas (GWA), both mean wind speed and wind power density are typically higher for the measurements. The difference is especially large for the more complex-terrain central highland sites where GWA results are also likely to be more uncertain. The result of this study can be used to make preliminary assessments on possible power production potential at the given sites.


2021 ◽  
Vol 8 (2) ◽  
Author(s):  
Alhassan A. Teyabeen ◽  
Fathi R. Akkari ◽  
Ali E. Jwaid ◽  
Ashraf Zaghwan ◽  
Rehab Abodelah

To assess the wind energy potential at any site, the wind power density should be estimated; it evaluates the wind resource and indicates the amount of available wind energy. The purpose of this study is to estimate the monthly and annual wind power density based on the Weibull distribution using wind speed data collected in Zwara, Libya during 2007. The wind date are measured at the three hub heights of 10m, 30m, and 50m above ground level, and recorded every 10 minutes. The analysis showed that the annual average wind speed are 4.51, 5.86, 6.26 m/s for the respective mentioned heights. The average annual wind power densities at the mentioned heights were 113.71, 204.19, 243.48 , respectively.


Author(s):  
V. P. Evstigneev ◽  
◽  
N. A. Lemeshko ◽  
V. A. Naumova ◽  
M. P. Evstigneev ◽  
...  

The paper deals with assessing an impact of wind climate change on the wind energy potential of the Azov and Black Sea coast region. A lower estimate of operating time for wind power installation and a potential annual energy output for the region are given for the case of Vestas V117-4.2MW. Calculation has been performed of a long-term mean wind speed for two adjacent climatic periods (1954–1983 and 1984–2013) based on data from meteorological stations of the Black and Azov Sea region. The results show a decrease in wind speed at all meteorological stations except for Novorossiysk. The wind climate change is confirmed by comparing two adjoined 30-year periods and by estimating linear trends of the mean annual wind speed for the period 1954–2013, which are negative and significant for almost all meteorological stations in the region (α = 1 %). The trend values were estimated by the nonparametric method of robust linear smoothing using the Theil – Sen function. In the present study, the uncertainty of wind energy resource induced by a gradual wind climate change is estimated for perspective planning of this branch of energy sector. Despite the observed trends in the wind regime, average wind speeds in the Azov and Black Sea region are sufficient for planning the location of wind power plants.


2021 ◽  
pp. 0309524X2110438
Author(s):  
Carlos Méndez ◽  
Yusuf Bicer

The present study analyzes the wind energy potential of Qatar, by generating a wind atlas and a Wind Power Density map for the entire country based on ERA-5 data with over 41 years of measurements. Moreover, the wind speeds’ frequency and direction are analyzed using wind recurrence, Weibull, and wind rose plots. Furthermore, the best location to install a wind farm is selected. The results indicate that, at 100 m height, the mean wind speed fluctuates between 5.6054 and 6.5257 m/s. Similarly, the Wind Power Density results reflect values between 149.46 and 335.06 W/m2. Furthermore, a wind farm located in the selected location can generate about 59.7437, 90.4414, and 113.5075 GWh/y electricity by employing Gamesa G97/2000, GE Energy 2.75-120, and Senvion 3.4M140 wind turbines, respectively. Also, these wind farms can save approximately 22,110.80, 17,617.63, and 11,637.84 tons of CO2 emissions annually.


2020 ◽  
pp. 0309524X2092540
Author(s):  
Addisu Dagne Zegeye

Although Ethiopia does not have significant fossil fuel resource, it is endowed with a huge amount of renewable energy resources such as hydro, wind, geothermal, and solar power. However, only a small portion of these resources has been utilized so far and less than 30% of the nation’s population has access to electricity. The wind energy potential of the country is estimated to be up to 10 GW. Yet less than 5% of this potential is developed so far. One of the reasons for this low utilization of wind energy in Ethiopia is the absence of a reliable and accurate wind atlas and resource maps. Development of reliable and accurate wind atlas and resource maps helps to identify candidate sites for wind energy applications and facilitates the planning and implementation of wind energy projects. The main purpose of this research is to assess the wind energy potential and model wind farm in the Mossobo-Harena site of North Ethiopia. In this research, wind data collected for 2 years from Mossobo-Harena site meteorological station were analyzed using different statistical software to evaluate the wind energy potential of the area. Average wind speed and power density, distribution of the wind, prevailing direction, turbulence intensity, and wind shear profile of the site were determined. Wind Atlas Analysis and Application Program was used to generate the generalized wind climate of the area and develop resource maps. Wind farm layout and preliminary turbine micro-sitting were done by taking various factors into consideration. The IEC wind turbine class of the site was determined and an appropriate wind turbine for the study area wind climate was selected and the net annual energy production and capacity factor of the wind farm were determined. The measured data analysis conducted indicates that the mean wind speed at 10 and 40 m above the ground level is 5.12 and 6.41 m/s, respectively, at measuring site. The measuring site’s mean power density was determined to be 138.55 and 276.52 W/m2 at 10 and 40 m above the ground level, respectively. The prevailing wind direction in the site is from east to south east where about 60% of the wind was recorded. The resource grid maps developed by Wind Atlas Analysis and Application Program on a 10 km × 10 km area at 50 m above the ground level indicate that the selected study area has a mean wind speed of 5.58 m/s and a mean power density of 146 W/m2. The average turbulence intensity of the site was found to be 0.136 at 40 m which indicates that the site has a moderate turbulence level. According to the resource assessment done, the area is classified as a wind Class IIIB site. A 2-MW rated power ENERCON E-82 E2 wind turbine which is an IEC Class IIB turbine with 82 m rotor diameter and 98 m hub height was selected for estimation of annual energy production on the proposed wind farm. 88 ENERCON E-82 E2 wind turbines were properly sited in the wind farm with recommended spacing between the turbines so as to reduce the wake loss. The rated power of the wind farm is 180.4 MW and the net annual energy production and capacity factor of the proposed wind farm were determined to be 434.315 GWh and 27.48% after considering various losses in the wind farm.


2020 ◽  
pp. 014459872092074 ◽  
Author(s):  
Muhammad Sumair ◽  
Tauseef Aized ◽  
Syed Asad Raza Gardezi ◽  
Syed Ubaid Ur Rehman ◽  
Syed Muhammad Sohail Rehman

Current work focusses on the wind potential assessment in South Punjab. Eleven locations from South Punjab have been analyzed using two-parameter Weibull model (with Energy Pattern Factor Method to estimate Weibull parameters) and five years (2014–2018) hourly wind data measured at 50 m height and collected from Pakistan Meteorological Department. Techno-economic analysis of energy production using six different turbine models was carried out with the purpose of presenting a clear picture about the importance of turbine selection at particular location. The analysis showed that Rahim Yar Khan carries the highest wind speed, highest wind power density, and wind energy density with values 4.40 ms−1, 77.2 W/m2 and 677.76 kWh/m2/year, respectively. On the other extreme, Bahawalnagar observes the least wind speed i.e. 3.60 ms−1 while Layyah observes the minimum wind power density and wind energy density as 38.96 W/m2 and 352.24 kWh/m2/year, respectively. According to National Renewable Energy Laboratory standards, wind potential ranging from 0 to 200 W/m2 is considered poor. Economic assessment was carried out to find feasibility of the location for energy harvesting. Finally, Polar diagrams drawn to show the optimum wind blowing directions shows that optimum wind direction in the region is southwest.


2012 ◽  
pp. 29-33
Author(s):  
S. Asghar Gholamian ◽  
S. Bagher Soltani ◽  
R. Ilka

First step for achieving wind energy is to locate points with appropriate wind power density in a country. Wind data which are recorded in a synoptic weather station, are the best way to study the wind potential of an area. In this paper wind speed period of Baladeh synoptic weather station is studied, since it has the maximum average of wind speed among 15 stations of the MAZANDARAN Province. Weibull factors k and c are calculated for 40 months from September 2006 to December 2009 and wind power density is determined based on these data. The total average of factors k and c for a height for 50 m are 1.442 m/s and 5.1256 respectively. By using the average of factors, wind power density in 50 m height will be 147.40 watt/m2 which is categorized as weak potential in wind class. However by monthly investigation it is shown that with a 50 m wind, this station can be put in medium class in hot months of the year.


2021 ◽  
Author(s):  
Stefano Susini ◽  
Melisa Menendez

<p>Climate change and offshore renewable energy sector are connected by a double nature link. Even though energy generation from clean marine sources is one of the strategies to reduce climate change impact within next decades, it is expected that large scale modification of circulation patterns will have in turn an impact on the spatial and temporal distribution of the wind fields. Under the WINDSURFER project of the ERA4CS initiative, we analyse the climate change impact on marine wind energy resource for the European offshore wind energy sector. Long-term changes in specific climate indicators are evaluated over the European marine domain (e.g. wind power density, extreme winds, operation hours) as well as local indicators (e.g. gross energy yield, capacity factor) at several relevant operating offshore wind farms.</p><p>Adopting an ensemble approach, we focus on the climate change greenhouse gases scenario RCP8.5 during the end of the century (2081-2100 period) and analyze the changes and uncertainty of the resulting multi-model from seven high resolution Regional Climate Models (RCM) realized within Euro-Cordex initiative (EUR-11, ~12.5km). ERA5 reanalysis and in-situ offshore measurements are the historical data used in present climate.</p><p>Results indicate a small decrease of wind energy production, testified by reduction of the climatological indicators of wind speed and wind power density, particularly in the NW part of the domain of study. The totality of the currently operating offshore windfarms is located in this area, where a decrease up to 20% in the annual energy production is expected by the end of the century, accompanied by a reduction of the operation hours between 5 and 8%. Exceptions are represented by Aegean and Baltic Sea, where these indicators are expected to slightly increase. Extreme storm winds however show a different spatial pattern of change. The wind speed associated to 50 years return period decreases within western Mediterranean Sea and Biscay Bay, while increases in the remaining part of the domain (up to 15% within Aegean and Black Sea). Finally, the estimated variations in wind direction are relevant on the Biscay Bay region.</p>


Author(s):  
Aboobacker Valliyil Mohammed ◽  
Ebrahim M.A.S. Al-Ansari ◽  
Shanas Puthuveetil Razak ◽  
Veerasingam Subramanian ◽  
Vethamony Ponnumony

Wind energy is one among the clean and renewable energy resources. The utilization of nonconventional energies over the conventional sources helps to reduce the carbon emissions significantly. The present study aims at investigating the wind energy potential at select coastal locations of Qatar using ERA5 winds. ERA5 is the updated reanalysis product of the European Centre for Medium-range Weather Forecasts (ECMWF), in which the scatterometer and in situ wind data are assimilated to improve the accuracy of predictions, thus the long-term and shortterm variabilities are reasonably well captured. Compared to the earlier studies, in this work, we have assessed the wind power at inland and offshore areas of Qatar, considering 40-year long (1979-2018) time series data with hourly ERA5 winds at 10-m height. The results show that there is no significant increase or decrease of wind power around Qatar in the last 40 years in most of the locations, while there is a slight decreasing trend in the offshore areas of Al Ruwais. This indicates that the average wind power is consistently available throughout the years. The links of climatic indices, especially the ENSO events with the wind climate of Qatar, are clearly evident in the long-term data. As obvious, the offshore regions of Qatar have relatively high wind power compared to the land areas. Among the selected locations, the highest annual mean wind power density is obtained in the offshore Al Ruwais (152 W/m2), followed by offshore Ras Laffan (134 W/m2) and land area of Al Khor (120 W/m2). The maximum wind power density varies between 1830 and 2120 W/m2 in the land areas, while it is between 1850 and 2410 W/m2 in the offshore areas of Qatar. The highest wind power is consistently available during the prevalence of shamal winds in winter (January-March) as well as summer (June).


Sign in / Sign up

Export Citation Format

Share Document