scholarly journals Assessment of wind energy potential across varying topographical features of Tamil Nadu, India

2019 ◽  
Vol 38 (1) ◽  
pp. 175-200 ◽  
Author(s):  
Shafiqur Rehman ◽  
Narayanan Natarajan ◽  
Mangottiri Vasudevan ◽  
Luai M Alhems

Wind energy is one of the abundant, cheap and fast-growing renewable energy sources whose intensive extraction potential is still in immature stage in India. This study aims at the determination and evaluation of wind energy potential of three cities located at different elevations in the state of Tamil Nadu, India. The historical records of wind speed, direction, temperature and pressure were collected for three South Indian cities, namely Chennai, Erode and Coimbatore over a period of 38 years (1980-2017). The mean wind power density was observed to be highest at Chennai (129 W/m2) and lowest at Erode (76 W/m2) and the corresponding mean energy content was highest for Chennai (1129 kWh/m2/year) and lowest at Erode (666 kWh/m2/year). Considering the events of high energy-carrying winds at Chennai, Erode and Coimbatore, maximum wind power density were estimated to be 185 W/m2, 190 W/m2 and 234 W/m2, respectively. The annual average net energy yield and annual average net capacity factor were selected as the representative parameters for expressing strategic wind energy potential at geographically distinct locations having significant variation in wind speed distribution. Based on the analysis, Chennai is found to be the most suitable site for wind energy production followed by Coimbatore and Erode.

Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1846 ◽  
Author(s):  
Teklebrhan Negash ◽  
Erik Möllerström ◽  
Fredric Ottermo

This paper presents the wind energy potential and wind characteristics for 25 wind sites in Eritrea, based on wind data from the years 2000–2005. The studied sites are distributed all over Eritrea, but can roughly be divided into three regions: coastal region, western lowlands, and central highlands. The coastal region sites have the highest potential for wind power. An uncertainty, due to extrapolating the wind speed from the 10-m measurements, should be noted. The year to year variations are typically small and, for the sites deemed as suitable for wind power, the seasonal variations are most prominent in the coastal region with a peak during the period November–March. Moreover, Weibull parameters, prevailing wind direction, and wind power density recalculated for 100 m above ground are presented for all 25 sites. Comparing the results to values from the web-based, large-scale dataset, the Global Wind Atlas (GWA), both mean wind speed and wind power density are typically higher for the measurements. The difference is especially large for the more complex-terrain central highland sites where GWA results are also likely to be more uncertain. The result of this study can be used to make preliminary assessments on possible power production potential at the given sites.


2021 ◽  
Vol 8 (2) ◽  
Author(s):  
Alhassan A. Teyabeen ◽  
Fathi R. Akkari ◽  
Ali E. Jwaid ◽  
Ashraf Zaghwan ◽  
Rehab Abodelah

To assess the wind energy potential at any site, the wind power density should be estimated; it evaluates the wind resource and indicates the amount of available wind energy. The purpose of this study is to estimate the monthly and annual wind power density based on the Weibull distribution using wind speed data collected in Zwara, Libya during 2007. The wind date are measured at the three hub heights of 10m, 30m, and 50m above ground level, and recorded every 10 minutes. The analysis showed that the annual average wind speed are 4.51, 5.86, 6.26 m/s for the respective mentioned heights. The average annual wind power densities at the mentioned heights were 113.71, 204.19, 243.48 , respectively.


2021 ◽  
Vol 13 (4) ◽  
pp. 2182
Author(s):  
Varadharajan Sankaralingam Sriraja Balaguru ◽  
Nesamony Jothi Swaroopan ◽  
Kannadasan Raju ◽  
Mohammed H. Alsharif ◽  
Mun-Kyeom Kim

This work demonstrates a techno-economical assessment of wind energy potential for four passes of Tamil Nadu (Aralvaimozhi, Shencottah, Palghat, and Cumbum) with uncertainty factors. First, a potential assessment was carried out with time-series data, and the Weibull parameters, such as c (scale) and k (shape), were determined using the modern-era retrospective analysis for research and applications (MEERA) data set. Using these parameters, the mean speed, most probable speed, power density, maximum energy-carrying speed of wind power were determined. From the analysis, it was observed that all four passes had better wind parameters; notably, the Aralvaimozhi pass attained a better range of about 6.563 m/s (mean wind speed), 226 W/m2 (wind power density), 6.403 m/s (most probable wind speed), and 8.699 m/s (max wind speed). Further, uncertainty factors, such as the probability of exceedance (PoE), wind shear co-efficient (WSC), surface roughness, and wake loss effect (WLE), were evaluated. The value of PoE was found to be within the bound for all the locations, i.e., below 15%. In addition, the ranged of WSC showed a good trend between 0.05 and 0.5. Moreover, the surface length of the passes was evaluated and recorded to be 0.0024 m with a 73% energy index. Further, output power, annual energy production (AEP), capacity factor (CF), and cost of wind energy of all four passes were computed using different wind turbine ratings in two cases, i.e., with and without WLE. It was observed that there was a huge profit in loss from all the four locations due to WLE that was estimated to be Rupees (Rs.) 10.07 crores without considering interest components and Rs. 13.66 crores with interest component at a 10% annual rate of interest.


2020 ◽  
Author(s):  
Chris G. Tzanis ◽  
Kostas Philippopoulos ◽  
Constantinos Cartalis ◽  
Konstantinos Granakis ◽  
Anastasios Alimissis ◽  
...  

<p>Energy production from the utilization of wind energy potential depends on the variability of the wind field as determined by the interaction of natural processes on different scales. Global climate change can cause alterations in the surface wind and thus it may affect the geographical distribution and the wind energy potential variability. Wind energy production is sensitive to wind speed changes, especially in the upper percentile of the wind speed distributions, where energy production is more effective. The importance of wind energy production changes is enhanced by the fact that wind energy investments are long-term and are characterized by high initial costs and low operating costs. In the present study, these changes are examined for the southeastern Mediterranean region, based on simulations of the Regional Climate Model ALADIN 5.2 extracted from the Med-CORDEX database for the climatic scenarios RCP4.5 and RCP8.5. The results indicate a wind power density increase over the Aegean Sea, the Ionian Sea, the Dardanelles and the Black Sea, with similar levels of increase for both climatic scenarios. In contrast, during the winter period there is a decline across the southeastern Mediterranean, which is more significant in the case of the RCP8.5 scenario. Finally, for most areas of eastern Greece, there is a reduction in the number of wind speed cases for both below and above cut-in and cut-out wind speeds, while there is an increase in the number of wind speed cases that wind turbines operate at their maximum power. The results are expected to reduce the uncertainty associated with the impact of climate change on wind energy production. </p>


2021 ◽  
pp. 0309524X2110438
Author(s):  
Carlos Méndez ◽  
Yusuf Bicer

The present study analyzes the wind energy potential of Qatar, by generating a wind atlas and a Wind Power Density map for the entire country based on ERA-5 data with over 41 years of measurements. Moreover, the wind speeds’ frequency and direction are analyzed using wind recurrence, Weibull, and wind rose plots. Furthermore, the best location to install a wind farm is selected. The results indicate that, at 100 m height, the mean wind speed fluctuates between 5.6054 and 6.5257 m/s. Similarly, the Wind Power Density results reflect values between 149.46 and 335.06 W/m2. Furthermore, a wind farm located in the selected location can generate about 59.7437, 90.4414, and 113.5075 GWh/y electricity by employing Gamesa G97/2000, GE Energy 2.75-120, and Senvion 3.4M140 wind turbines, respectively. Also, these wind farms can save approximately 22,110.80, 17,617.63, and 11,637.84 tons of CO2 emissions annually.


2012 ◽  
pp. 29-33
Author(s):  
S. Asghar Gholamian ◽  
S. Bagher Soltani ◽  
R. Ilka

First step for achieving wind energy is to locate points with appropriate wind power density in a country. Wind data which are recorded in a synoptic weather station, are the best way to study the wind potential of an area. In this paper wind speed period of Baladeh synoptic weather station is studied, since it has the maximum average of wind speed among 15 stations of the MAZANDARAN Province. Weibull factors k and c are calculated for 40 months from September 2006 to December 2009 and wind power density is determined based on these data. The total average of factors k and c for a height for 50 m are 1.442 m/s and 5.1256 respectively. By using the average of factors, wind power density in 50 m height will be 147.40 watt/m2 which is categorized as weak potential in wind class. However by monthly investigation it is shown that with a 50 m wind, this station can be put in medium class in hot months of the year.


Author(s):  
Aboobacker Valliyil Mohammed ◽  
Ebrahim M.A.S. Al-Ansari ◽  
Shanas Puthuveetil Razak ◽  
Veerasingam Subramanian ◽  
Vethamony Ponnumony

Wind energy is one among the clean and renewable energy resources. The utilization of nonconventional energies over the conventional sources helps to reduce the carbon emissions significantly. The present study aims at investigating the wind energy potential at select coastal locations of Qatar using ERA5 winds. ERA5 is the updated reanalysis product of the European Centre for Medium-range Weather Forecasts (ECMWF), in which the scatterometer and in situ wind data are assimilated to improve the accuracy of predictions, thus the long-term and shortterm variabilities are reasonably well captured. Compared to the earlier studies, in this work, we have assessed the wind power at inland and offshore areas of Qatar, considering 40-year long (1979-2018) time series data with hourly ERA5 winds at 10-m height. The results show that there is no significant increase or decrease of wind power around Qatar in the last 40 years in most of the locations, while there is a slight decreasing trend in the offshore areas of Al Ruwais. This indicates that the average wind power is consistently available throughout the years. The links of climatic indices, especially the ENSO events with the wind climate of Qatar, are clearly evident in the long-term data. As obvious, the offshore regions of Qatar have relatively high wind power compared to the land areas. Among the selected locations, the highest annual mean wind power density is obtained in the offshore Al Ruwais (152 W/m2), followed by offshore Ras Laffan (134 W/m2) and land area of Al Khor (120 W/m2). The maximum wind power density varies between 1830 and 2120 W/m2 in the land areas, while it is between 1850 and 2410 W/m2 in the offshore areas of Qatar. The highest wind power is consistently available during the prevalence of shamal winds in winter (January-March) as well as summer (June).


2019 ◽  
Vol 7 (10) ◽  
pp. 361 ◽  
Author(s):  
Gabriel Ibarra-Berastegi ◽  
Alain Ulazia ◽  
Jon Saénz ◽  
Santos J. González-Rojí

The only regional evaluation of Lebanese wind-energy potential (National Wind Atlas) dates back to 2011 and was carried out by a United Nations agency. In this work, data from the most recent reanalysis (ERA5) developed at the European Center for Medium Range Weather Forecast (ECMWF), corresponding to the 2010–2017 period, were used to evaluate Lebanese offshore-wind-energy potential. In the present study, wind power density associated to a SIEMENS 154/6 turbine was calculated with a horizontal resolution of 31 km and 1 hour time steps. This work incorporated the impact of air density changes into the calculations due to the seasonal evolution of pressure, temperature, and humidity. Observed average offshore air density ρ 0 was 1.19 kg / m 3 for the 2010–2017 period, but if instead of ρ 0 , hourly ρ values were used, seasonal oscillations of wind power density ( W P D ) represented differences in percentage terms ranging from −4% in summer to +3% in winter. ERA5 provides hourly wind, temperature, pressure, and dew-point temperature values that allowed us to calculate the hourly evolution of air density during this period and could also be used to accurately evaluate wind power density off the Lebanese coast. There was a significant gradient in wind power density along the shore, with the northern coastal area exhibiting the highest potential and reaching winter values of around 400 W / m 2 . Finally, this study suggests that the initial results provided by the National Wind Atlas overestimated the true offshore-wind-energy potential, thus highlighting the suitability of ERA5 as an accurate tool for similar tasks globally.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
N. Laban Ongaki ◽  
Christopher M. Maghanga ◽  
Joash Kerongo

Background. Global warming is a growing threat in the world today mainly due to the emission of CO2 caused by the burning of fossil fuel. Consequently, countries are being forced to seek potential alternative sources of energy such as wind, solar, and photovoltaic among many others. However, the realization of their benefits is faced with challenges. Though wind stands a chance to solve this problem, the lack of adequate site profiles, long-term behavioural information, and specific data information that enables informed choice on site selection, turbine selection, and expected power output has remained a challenge to its exploitation. In this research, Weibull and Rayleigh models are adopted. Wind speeds were analyzed and characterized in the short term and then simulated for a long-term measured hourly series data of daily wind speeds at a height of 10 m. The analysis included daily wind data which was grouped into discrete data and then calculated to represent the mean wind speed, diurnal variations, daily variations, and monthly variations. To verify the models, statistical tools of Chi square, RMSE, MBE, and correlational coefficient were applied. Also, the method of measure, correlate, and predict was adopted to check for the reliability of the data used. The wind speed frequency distribution at the height of 10 m was found to be 2.9 ms-1 with a standard deviation of 1.5. From the six months’ experiments, averages of wind speeds at hub heights of 10 m were calculated and found to be 1.7 m/s, 2.4 m/s, and 1.3 m/s, for Ikobe, Kisii University, and Nyamecheo stations, respectively. The wind power density of the region was found to be 29 W/m2. By a narrow margin, Rayleigh proves to be a better method over Weibull in predicting wind power density in the region. Wind speeds at the site are noted to be decreasing over the years. The region is shown as marginal on extrapolation to 30 m for wind energy generation hence adequate for nongrid connected electrical and mechanical applications. The strong correlation between the site wind profiles proves data reliability. The gradual decrease of wind power over the years calls for attention.


Author(s):  
V. P. Evstigneev ◽  
◽  
N. A. Lemeshko ◽  
V. A. Naumova ◽  
M. P. Evstigneev ◽  
...  

The paper deals with assessing an impact of wind climate change on the wind energy potential of the Azov and Black Sea coast region. A lower estimate of operating time for wind power installation and a potential annual energy output for the region are given for the case of Vestas V117-4.2MW. Calculation has been performed of a long-term mean wind speed for two adjacent climatic periods (1954–1983 and 1984–2013) based on data from meteorological stations of the Black and Azov Sea region. The results show a decrease in wind speed at all meteorological stations except for Novorossiysk. The wind climate change is confirmed by comparing two adjoined 30-year periods and by estimating linear trends of the mean annual wind speed for the period 1954–2013, which are negative and significant for almost all meteorological stations in the region (α = 1 %). The trend values were estimated by the nonparametric method of robust linear smoothing using the Theil – Sen function. In the present study, the uncertainty of wind energy resource induced by a gradual wind climate change is estimated for perspective planning of this branch of energy sector. Despite the observed trends in the wind regime, average wind speeds in the Azov and Black Sea region are sufficient for planning the location of wind power plants.


Sign in / Sign up

Export Citation Format

Share Document