Stable Isotope Evidence for Recent Global Warming Hiatus

Author(s):  
Rui Wang ◽  
Zhongfang Liu

<p>Global mean surface air temperature (SAT) has remained relative stagnant since the late 1990s, a phenomenon known as global warming hiatus. Despite widespread concern and discussion, there is still an open question about whether this hiatus exists, partly due to the biases in observations. The stable isotopic composition of precipitation in mid- and high-latitude continents closely tracks change of the air temperature, providing an alternative to evaluate global warming hiatus. Here we use the long-term precipitation δ<sup>18</sup>O records available to investigate changes in SAT over the period 1970–2016. The results reveal slight decline in δ<sup>18</sup>O anomaly from 1998 to 2012, with a slope of -0.0004‰ decade<sup>-1 </sup>which is significantly different from that of pre-1998 interval. This downward δ<sup>18</sup>O anomaly trend suggests a slight cooling for about -0.001°C decade<sup>-1</sup>, corroborating the recent hiatus in global warming. Our work provides new evidence for recent global warming hiatus and highlights the potential of utilizing precipitation isotope for tracking climate changes.</p>

2018 ◽  
Author(s):  
Sang-Keun Song ◽  
Zang-Ho Shon ◽  
Yu-Na Choi ◽  
Young-Baek Son ◽  
Minsung Kang ◽  
...  

Abstract. Long-term trends in global sea spray aerosol (SSA) emissions and dimethyl sulfide (DMS) fluxes from sea to air during the recent global warming hiatus (2000–2015) were analyzed using satellite observations and modelling data. The SSA emissions were estimated using a widely used whitecap method with sea surface temperature (SST) dependence. In addition, sea-to-air DMS fluxes were also used to quantify the secondary contributions of DMS through its sequential oxidation and gas-to-particle conversion. Aerosol optical depth (AOD) was estimated by an aerosol optical model using the number concentration of SSA and non-sea-salt sulfate from DMS. The estimated AOD, which was derived from the SSA and DMS emitted from the sea surface, was compared with satellite-derived AOD to quantify its (primary and secondary) contribution to atmospheric aerosol loading (i.e., observed AOD). Yearly global mean anomalies in DMS fluxes and AOD derived from SSA showed statistically significant downward trends during the recent global warming hiatus, whereas SSA emissions and AOD derived from DMS oxidation did not. In terms of regional trends, the decreases in SSA emissions during 2000–2015 occurred over the central Pacific Ocean, the Indian Ocean, and the Caribbean Sea, whereas upward trends in SSA emissions occurred over the tropical southeastern Pacific Ocean, the Southern Ocean, and the North Atlantic Ocean. DMS fluxes during the study period showed a clear downward trend over most regions of the global ocean. The estimates of the contributions of SSA (primary) and DMS (secondary) to atmospheric aerosol loading were 23–62% and 26–38%, respectively, with the largest primary contribution (~90%) over the Southern Ocean.


2019 ◽  
Vol 29 (4) ◽  
pp. 496-516 ◽  
Author(s):  
Qinqin Du ◽  
Mingjun Zhang ◽  
Shengjie Wang ◽  
Cunwei Che ◽  
Rong Ma ◽  
...  

2015 ◽  
Vol 28 (9) ◽  
pp. 3834-3845 ◽  
Author(s):  
Thomas L. Delworth ◽  
Fanrong Zeng ◽  
Anthony Rosati ◽  
Gabriel A. Vecchi ◽  
Andrew T. Wittenberg

Abstract Portions of western North America have experienced prolonged drought over the last decade. This drought has occurred at the same time as the global warming hiatus—a decadal period with little increase in global mean surface temperature. Climate models and observational analyses are used to clarify the dual role of recent tropical Pacific changes in driving both the global warming hiatus and North American drought. When observed tropical Pacific wind stress anomalies are inserted into coupled models, the simulations produce persistent negative sea surface temperature anomalies in the eastern tropical Pacific, a hiatus in global warming, and drought over North America driven by SST-induced atmospheric circulation anomalies. In the simulations herein the tropical wind anomalies account for 92% of the simulated North American drought during the recent decade, with 8% from anthropogenic radiative forcing changes. This suggests that anthropogenic radiative forcing is not the dominant driver of the current drought, unless the wind changes themselves are driven by anthropogenic radiative forcing. The anomalous tropical winds could also originate from coupled interactions in the tropical Pacific or from forcing outside the tropical Pacific. The model experiments suggest that if the tropical winds were to return to climatological conditions, then the recent tendency toward North American drought would diminish. Alternatively, if the anomalous tropical winds were to persist, then the impact on North American drought would continue; however, the impact of the enhanced Pacific easterlies on global temperature diminishes after a decade or two due to a surface reemergence of warmer water that was initially subducted into the ocean interior.


2015 ◽  
Vol 96 (12) ◽  
pp. S25-S28 ◽  
Author(s):  
Xiaosong Yang ◽  
G. A. Vecchi ◽  
T. L. Delworth ◽  
K. Paffendorf ◽  
L. Jia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document