Climate assessment of emissions scenarios for use in WG3 of the IPCC’s Sixth Assessment Report

Author(s):  
Matthew Gidden ◽  
Zebedee Nicholls ◽  
Edward Byers ◽  
Gaurav Ganti ◽  
Jarmo Kikstra ◽  
...  

<p>Consistent and comparable climate assessments of scenarios are critical within the context of IPCC assessment reports. Given the number of scenarios assessed by WG3, the assessment “pipeline” must be almost completely automated. Here, we present the application of a new assessment pipeline which combines state-of-the-art components into a single workflow in order to derive climate outcomes for integrated assessment model (IAM) scenarios assessed by WG3 of the IPCC. A consistent analysis ensures that WG3’s conclusions about the socioeconomic transformations required to maintain a safe climate are based on the best understanding of our planetary boundaries from WG1. For example, if WG1 determines that climate sensitivity is higher than previously considered, then WG3 could incorporate this insight by e.g. considering much smaller remaining carbon budgets for any given temperature target.</p><p> </p><p>The scenario-climate assessment pipeline is comprised of three primary components. First, a consistent harmonization algorithm which maintains critical model characteristics between harmonized and unharmonized scenarios [1] is employed to harmonize emissions trajectories to a common and consistent historical dataset as used in CMIP6 [2]. Next, a scenario’s reported emissions trajectories are analyzed as to the completeness of its species and sectoral coverage. A consistent set of 14 emissions species are expected, aligning with published work within ScenarioMIP and CMIP6 (see ref [2], Table 2). Should any component of this full set of emissions trajectories be absent for a given scenario, an algorithm (e.g., generalised quantile walk [3]) is employed in order to “back-fill” missing species at the native model regional resolution. Finally, full emissions scenarios are analyzed by an Earth System Model emulator, e.g., MAGICC [4].</p><p> </p><p>In this presentation, we explore differences in climate assessments and estimated remaining carbon budgets across various components of the pipeline for available scenarios in the literature. We consider the impact of alternative choices, especially those made in prior assessments by the IPCC (AR5, SR15), including, for example, the historical emissions database used, the effect of harmonization and back-filling, as well as the version and setup of MAGICC used. </p><p> </p><p>References</p><p> </p><p>[1] Gidden, M.J., Fujimori, S., van den Berg, M., Klein, D., Smith, S.J., van Vuuren, D.P. and Riahi, K., 2018. A methodology and implementation of automated emissions harmonization for use in Integrated Assessment Models. Environmental Modelling & Software, 105, pp.187-200.</p><p> </p><p>[2] Gidden, M. J., Riahi, K., Smith, S. J., Fujimori, S., Luderer, G., Kriegler, E., van Vuuren, D. P., van den Berg, M., Feng, L., Klein, D., Calvin, K., Doelman, J. C., Frank, S., Fricko, O., Harmsen, M., Hasegawa, T., Havlik, P., Hilaire, J., Hoesly, R., Horing, J., Popp, A., Stehfest, E., and Takahashi, K.: Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century, Geosci. Model Dev., 12, 1443-1475, https://doi.org/10.5194/gmd-12-1443-2019, 2019.</p><p> </p><p>[3] Teske, S. et al., Achieving the Paris Climate Agreement Goals. Springer, 2019.</p><p> </p><p>[4] Meinshausen, M., Raper, S.C. and Wigley, T.M., 2011. Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6–Part 1: Model description and calibration. Atmospheric Chemistry and Physics, 11(4), pp.1417-1456.</p>

Resources ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 33 ◽  
Author(s):  
Antoine Boubault ◽  
Nadia Maïzi

Achieving a “carbon neutral” world by 2100 or earlier in a context of economic growth implies a drastic and profound transformation of the way energy is supplied and consumed in our societies. In this paper, we use life-cycle inventories of electricity-generating technologies and an integrated assessment model (TIMES Integrated Assessment Model) to project the global raw material requirements in two scenarios: a second shared socioeconomic pathway baseline, and a 2 °C scenario by 2100. Material usage reported in the life-cycle inventories is distributed into three phases, namely construction, operation, and decommissioning. Material supply dynamics and the impact of the 2 °C warming limit are quantified for three raw fossil fuels and forty-eight metallic and nonmetallic mineral resources. Depending on the time horizon, graphite, sand, sulfur, borates, aluminum, chromium, nickel, silver, gold, rare earth elements or their substitutes could face a sharp increase in usage as a result of a massive installation of low-carbon technologies. Ignoring nonfuel resource availability and value in deep decarbonation, circular economy, or decoupling scenarios can potentially generate misleading, contradictory, or unachievable climate policies.


2021 ◽  
Author(s):  
Attila N. Lazar ◽  
Robert J. Nicholls ◽  
Craig W. Hutton ◽  
Andres Payo ◽  
Helen Adams ◽  
...  

<p>Deltas occupy only 1% of global land surface area, but contain 7% of the global human population (ca. 500 million). The influence of changing and interacting climates, demography, economy, land use and coastal/catchment management on deltaic social-ecological systems is complex and little understood. We apply a new and innovative integrated assessment model: The Delta Dynamic Integrated Emulator Model (ΔDIEM) to coastal Bangladesh to explore a range of plausible future scenarios and quantify the sensitivities of selected environmental and socio-economic outcomes to key external and internal drivers. ΔDIEM is a tightly coupled integrated assessment platform considering climate and environmental change, demographic changes, economic changes, household decision making and governance, and designed to support the delta planning in Bangladesh. ΔDIEM allows the testing of a large number of water-based structural and policy interventions within a robust scenario framework, as well as quantify different development trajectories and their trade-offs. In this sensitivity analysis, we quantified the impact of (i) climate (precipitation, temperature and runoff), (ii) relative sea-level rise, (iii) cyclone frequency, (iv) embankment maintenance, (v) population size, (vi) economic changes at household level such as selling price of crops, cost of food, etc., (vii) land cover, and (viii) farming practices on trajectories of inundated area, soil salinity, rice productivity, poverty, income inequality and GDP/capita, assuming two contrasting scenarios in a more Positive and a more Negative World. Trajectories of these plausible futures showed a clear separation and the long-term trends are greatly influenced by the combinations of scenario assumptions. Our systemic results indicate a diverse potential set of futures for coastal Bangladesh, where good governance and adaptation could effectively mitigate the threat of sea-level rise-induced catastrophic inundation and other adverse impacts of the changing climate. However, societal inequality requires special attention otherwise climate-sensitive population groups may be left behind.</p>


2021 ◽  
Author(s):  
Haiyan Jiang ◽  
Slobodan P. Simonovic ◽  
Zhongbo Yu

Abstract. Yangtze Economic Belt is one of the most dynamic regions in China in terms of population growth, economic progress, industrialization, and urbanization. It faces many resource constraints (food, energy) and environmental challenges (pollution, biodiversity loss) under rapid population growth and economic development. Interactions between human and natural systems are at the heart of the challenges facing the sustainable development of the Yangtze Economic Belt. Understanding these interactions poses challenges because human and natural systems evolve in response to a wide range of influences. Accounting for these complex dynamics requires a system tool that can represent the fundamental drivers of change and responses of the individual system as well as how different systems interact and co-evolve. By adopting the system thinking and the methodology of system dynamics simulation, an integrated assessment model for the Yangtze Economic Belt, named ANEMI_Yangtze, is developed based on the third version of the global integrated assessment model, ANEMI. Nine sectors of population, economy, land, food, energy, water, carbon, nutrients, and fish are currently included in ANEMI_Yangtze. This paper identifies the opportunities and challenges facing the Yangtze Economic Belt and presents the ANEMI_Yangtze model structure. It also includes: (i) the identification of the cross-sectoral interactions and feedbacks involved in shaping Yangtze Economic Belt’s system behaviour over time; (ii) the identification of the feedbacks within each sector that drive the state variables in that sector; and (iii) the explanation of the theoretical and mathematical basis for those feedbacks. ANEMI_Yangtze was developed and calibrated sector by sector before coupling them together into complete ANEMI_Yangtze model. After the validation and robustness test, the ANEMI_Yangtze model can be used to support decision making, policy assessment, and scenario development. This study aims to improve the understanding of the complex interactions among human and natural systems in the Yangtze Economic Belt to provide foundation for science-based policies for the sustainable development of the economic belt.


2012 ◽  
Vol 17 (6) ◽  
pp. 689-713 ◽  
Author(s):  
Carlo Carraro ◽  
Emanuele Massetti

AbstractThis paper examines future energy and emissions scenarios in China generated by the Integrated Assessment Model WITCH. A Business-as-Usual scenario is compared with five scenarios in which greenhouse gases emissions are taxed, at different levels. The elasticity of China's emissions is estimated by pooling observations from all scenarios and comparing them with the elasticity of emissions in OECD countries. China has a higher elasticity than the OECD for a carbon tax lower than US$50 per ton of CO2-eq. For higher taxes, emissions in OECD economies are more elastic than in China. Our best guess indicates that China would need to introduce a tax equal to about US$750 per ton of CO2-eq in 2050 to achieve the Major Economies Forum goal set for mid-century. In our preferred estimates, the discounted cost of following the 2°C trajectory is equal to 5.4 per cent and to 2.7 per cent of GDP in China and the OECD, respectively.


2021 ◽  
Vol 167 (3-4) ◽  
Author(s):  
Camilla C. N. de Oliveira ◽  
Gerd Angelkorte ◽  
Pedro R. R. Rochedo ◽  
Alexandre Szklo

2017 ◽  
Author(s):  
Abigail C. Snyder ◽  
Robert P. Link ◽  
Katherine V. Calvin

Abstract. Hindcasting experiments (conducting a model forecast for a time period in which observational data is available) are rarely undertaken in the Integrated Assessment Model (IAM) community. When they are undertaken, the results are often evaluated using global aggregates or otherwise highly aggregated skill scores that mask deficiencies. We select a set of deviation based measures that can be applied at different spatial scales (regional versus global) to make evaluating the large number of variable-region combinations in IAMs more tractable. We also identify performance benchmarks for these measures, based on the statistics of the observational dataset, that allow a model to be evaluated in absolute terms rather than relative to the performance of other models at similar tasks. This is key in the integrated assessment community, where there often are not multiple models conducting hindcast experiments to allow for model intercomparison. The performance benchmarks serve a second purpose, providing information about the reasons a model may perform poorly on a given measure and therefore identifying opportunities for improvement. As a case study, the measures are applied to the results of a past hindcast experiment focusing on land allocation in the Global Change Assessment Model (GCAM) version 3.0. We find quantitative evidence that global aggregates alone are not sufficient for evaluating IAMs, such as GCAM, that require global supply to equal global demand at each time period. Additionally, the deviation measures examined in this work successfully identity parametric and structural changes that may improve land allocation decisions in GCAM. Future work will involve implementing the suggested improvements to the GCAM land allocation system identified by the measures in this work, using the measures to quantify performance improvement due to these changes, and, ideally, applying these measures to other sectors of GCAM and other land allocation models.


Sign in / Sign up

Export Citation Format

Share Document