Multi-model evaluation of aerosol optical properties in the AeroCom phase III Control experiment, using ground and space based observations from AERONET, MODIS, AATSR and a merged satellite product as well as surface in-situ observations from GAW sites

Author(s):  
Jonas Gliß ◽  
Augustin Mortier ◽  
Michael Schulz ◽  

<p>Within the framework of the AeroCom (Aerosol Comparisons between Observations and Models) initiative, the present day modelling of aerosol optical properties has been assessed using simulated data representative for the year 2010, from 14 global aerosol models participating in the Phase III Control experiment. The model versions are close or equal to those used for CMIP6 and AerChemMIP and inform also on bias in state of the art Earth-System-Models (ESMs).<br>Modelled column optical depths (total, fine and coarse mode AOD) and Angstrom Exponents (AE) were compared both with ground based observations from the Aerosol Robotic Network (AERONET, version 3) and space based observations from the AATSR instrument. In addition, the modelled AODs were compared with MODIS (Aqua and Terra) data and a satellite AOD data-set (MERGED-FMI) merged from 12 different individual AOD products. Furthermore, for the first time, the modelled near surface scattering (under dry conditions) and absorption coefficients were evaluated against measurements made at low relative humidity at surface in-situ GAW sites. <br>The AeroCom MEDIAN and most of the participating models underestimate the optical properties investigated, relative to remote sensing observations. AERONET AOD is underestimated by 21%+/-17%. Against satellite data, the model AOD biases range from -38% (MODIS-terra) to -17% (MERGED-FMI). Correlation coefficients of model AODs with AERONET, MERGED-FMI and AATSR-SU are high (0.8-0.9) and slightly lower against the two MODIS data-sets (0.6-0.8). Investigation of fine and coarse AODs from the MEDIAN model reveals biases of -10%+/-20% and -41%+/-29% against AERONET and -13% and -24% against AATSR-SU, respectively. The differences in model bias against AERONET and AATSR-SU are in agreement with the established bias of AATSR against AERONET. These results indicate that most of the AOD bias is due to missing coarse AOD in the regions covered by these observations. Underestimates are also found when comparing the models against the surface GAW observations, showing AeroCom MEDIAN mean bias and inter-model variation of -44%+/-22% and -32%+/-34% for scattering and absorption coefficients, respectively. Dry scattering shows higher underestimation than AOD at ambient relative humidity and is in agreement with recent findings that suggest that models tend to overestimate scattering enhancement due to hygroscopic growth. <br>Considerable diversity is found among the models in the simulated near surface absorption coefficients, particularly in regions associated with dust (e.g. Sahara, Tibet), biomass burning (e.g. Amazonia, Central Australia) and biogenic emissions (e.g. Amazonia). Regions associated with high anthropogenic BC emissions such as China and India exhibit comparatively good agreement for all models. Evaluation of modelled column AEs shows an underestimation of 9%+/-24% against AERONET and -21% against AATSR-SU. This suggests that models tend to overestimate particle size, with implications for lifetime and radiative transfer calculations. An investigation of modelled emissions, burdens and lifetimes, mass-specific-extinction coefficients (MECs) and optical depths (ODs) for each species and model reveals considerable diversity in most of these parameters. Inter-model spread of aerosol species lifetime appears to be similar to that of mass extinction coefficients, suggesting that AOD uncertainties are still associated to a broad spectrum of parameterised aerosol processes.</p>

2020 ◽  
Author(s):  
Jonas Gliß ◽  
Augustin Mortier ◽  
Michael Schulz ◽  
Elisabeth Andrews ◽  
Yves Balkanski ◽  
...  

Abstract. Within the framework of the AeroCom (Aerosol Comparisons between Observations and Models) initiative, the present day modelling of aerosol optical properties has been assessed using simulated data representative for the year 2010, from 14 global aerosol models participating in the Phase III Control experiment. The model versions are close or equal to those used for CMIP6 and AerChemMIP and inform also on bias in state of the art ESMs. Modelled column optical depths (total, fine and coarse mode AOD) and Angstrom Exponents (AE) were compared both with ground based observations from the Aerosol Robotic Network (AERONET, version 3) as well as space based observations from AATSR-SU instruments. In addition, the modelled AODs were compared with MODIS (Aqua and Terra) data and a satellite AOD data-set (MERGED-FMI) merged from 12 different individual AOD products. Furthermore, for the first time, the modelled near surface scattering (under dry conditions) and absorption coefficients were evaluated against measurements made at low relative humidity at surface in-situ GAW sites. Statistics are based mainly on normalised mean biases and Pearson correlation coefficients from colocated model and observation data in monthly resolution. Hence, the results are mostly representative for the regions covered by each of the observation networks. Model biases established against satellite data yield insights into remote continental areas and oceans, where ground-based networks lack site coverage. The satellite data themselves are evaluated against AERONET observations, to test our aggregation and re-gridding routines, suggesting relative AOD biases of −5 %, −6 %, +9 % and +18 % for AATSR-SU, MERGED-FMI, MODIS-aqua and MODIS-terra, respectively, with high correlations exceeding 0.8. Biases of fine and coarse AOD and AE in AATSR are found to be +2 %, −16 % and +14.7 % respectively, at AERONET sites, with correlations of the order of 0.8. The AeroCom MEDIAN and most of the participating models underestimate the optical properties investigated, relative to remote sensing observations. AERONET AOD is underestimated by 21 % ± 17 %. Against satellite data, the model AOD biases range from −38 % (MODIS-terra) to −17 % (MERGED-FMI). Correlation coefficients of model AODs with AERONET, MERGED-FMI and AATSR-SU are high (0.8–0.9) and slightly lower against the two MODIS data-sets (0.6–0.8). Investigation of fine and coarse AODs from the MEDIAN model reveals biases of −10% ± 20 % and −41 % ± 29 % against AERONET and −13 % and −24 % against AATSR-SU, respectively. The differences in bias against AERONET and AATSR-SU are in agreement with the established satellite bias against AERONET. These results indicate that most of the AOD bias is due to missing coarse AOD in the regions covered by these observations. Underestimates are also found when comparing the models against the surface GAW observations, showing AeroCom MEDIAN mean bias and inter-model variation of −44 % ± 22 % and −32 % ± 34 % for scattering and absorption coefficients, respectively. Dry scattering shows higher underestimation than AOD at ambient relative humidity and is in agreement with recent findings that suggest that models tend to overestimate scattering enhancement due to hygroscopic growth. Broadly consistent negative bias in AOD and scattering suggest a general underestimate in aerosol effects in current global aerosol models. The large diversity in the surface absorption results suggests differences in the model treatment of light absorption by black carbon (BC), dust (DU) and to a minor degree, organic aerosol (OA). Considerable diversity is found among the models in the simulated near surface absorption coefficients, particularly in regions associated with dust (e.g. Sahara, Tibet), biomass burning (e.g. Amazonia, Central Australia) and biogenic emissions (e.g. Amazonia). Regions associated with high anthropogenic BC emissions such as China and India exhibit comparatively good agreement for all models. Evaluation of modelled column AEs shows an underestimation of 9 % ± 24 % against AERONET and −21 % against AATSR-SU. This suggests that overall, models tend to overestimate particle size, with implications for lifetime and radiative transfer calculations. An investigation of modelled emissions, burdens and lifetimes, mass-specific-extinction coefficients (MECs) and optical depths (ODs) for each species and model reveals considerable diversity in most of these parameters. These are discussed in detail for each model individually. Inter-model spread of aerosol species lifetime appears to be similar to that of mass extinction coefficients, suggesting that AOD uncertainties are still associated to a broad spectrum of parameterised aerosol processes.


2021 ◽  
Author(s):  
Maria Ángeles Burgos Simón ◽  
Elisabeth Andrews ◽  
Gloria Titos ◽  
Angela Benedetti ◽  
Huisheng Bian ◽  
...  

<p>The particle hygroscopic growth impacts the optical properties of aerosols and, in turn, affects the aerosol-radiation interaction and calculation of the Earth’s radiative balance. The dependence of particle light scattering on relative humidity (RH) can be described by the scattering enhancement factor f(RH), defined as the ratio between the particle light scattering coefficient at a given RH divided by its dry value.</p><p>The first effort of the AeroCom Phase III – INSITU experiment was to develop an observational dataset of scattering enhancement values at 26 sites to study the uptake of water by atmospheric aerosols, and evaluate f(RH) globally (Burgos et al., 2019). Model outputs from 10 Earth System Models (CAM, CAM-ATRAS, CAM-Oslo, GEOS-Chem, GEOS-GOCART, MERRAero, TM5, OsloCTM3, IFS-AER, and ECMWF) were then evaluated against this in-situ dataset. Building on these results, we investigate f(RH) in the context of other aerosol optical and chemical properties, making use of the same 10 Earth System Models (ESMs) and in-situ measurements as in Burgos et al. (2020) and Titos et al. (2021).</p><p>Given the difficulties of deploying and maintaining instrumentation for long-term, accurate and comprehensive f(RH) observations, it is desirable to find an observational proxy for f(RH). This observation-based proxy would also need to be reproduced in modelling space. Our aim here is to evaluate how ESMs currently represent the relationship between f(RH), scattering Ångström exponent (SAE), and single scattering albedo (SSA). This work helps to identify current challenges in modelling water-uptake by aerosols and their impact on aerosol optical properties within Earth system models.</p><p>We start by analyzing the behavior of SSA with RH, finding the expected increase with RH for all site types and models. Then, we analyze the three variables together (f(RH)-SSA-SAE relationship). Results show that hygroscopic particles tend to be bigger and scatter more than non-hygroscopic small particles, though variability within models is noticeable. This relationship can be further studied by relating SAE to model chemistry, by selecting those grid points dominated by a single chemical component (mass mixing ratios > 90%). Finally, we analyze model performance at three specific sites representing different aerosol types: Arctic, marine and rural. At these sites, the model data can be exactly temporally and spatially collocated with the observations, which should help to identify the models which exhibit better agreement with measurements and for which aerosol type.</p><p> </p><p>Burgos, M.A. et al.: A global view on the effect of water uptake on aerosol particle light scattering. Sci Data 6, 157. https://doi.org/10.1038/s41597-019-0158-7, 2019.</p><p>Burgos, M.A. et al.: A global model–measurement evaluation of particle light scattering coefficients at elevated relative humidity, Atmos. Chem. Phys., 20, 10231–10258, https://doi.org/10.5194/acp-20-10231-2020, 2020.</p><p>Titos, G. et al.: A global study of hygroscopicity-driven light scattering enhancement in the context of other in-situ aerosol optical properties, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2020-1250, in review, 2020.</p>


2012 ◽  
Vol 12 (12) ◽  
pp. 5647-5659 ◽  
Author(s):  
A. Leskinen ◽  
A. Arola ◽  
M. Komppula ◽  
H. Portin ◽  
P. Tiitta ◽  
...  

Abstract. We introduce a four-year (in 2006–2010) continuous data set of aerosol optical properties at Puijo in Kuopio, Finland. We study the annual and diurnal variation of the aerosol scattering and absorption coefficients, hemispheric backscattering fraction, scattering Ångström exponent, and single scattering albedo, whose median values over this period were 7.2 Mm−1 (at 550 nm), 1.0 Mm−1 (at 637 nm), 0.15, 1.93 (between 450 and 550 nm), and 0.85, respectively. The scattering coefficient peaked in the spring and autumn, being 2–4 times those in the summer and winter. An exception was the summer of 2010, when the scattering coefficient was elevated to ~300 Mm−1 by plumes from forest fires in Russia. The absorption coefficient peaked in the winter when soot-containing particles derived from biomass burning were present. The higher relative absorption coefficients resulted in lower single scattering albedo in winter. The optical properties varied also with wind direction and time of the day, indicating the effect of the local pollutant sources and the age of the particles. Peak values in the single scattering albedo were observed when the wind blew from a paper mill and from the sector without local pollutant sources. These observations were linked, respectively, to the sulphate-rich aerosol from the paper mill and the oxygenated organics in the aged aerosol, which both are known to increase the scattering characteristics of aerosols. Decreases in the single scattering albedo in the morning and afternoon, distinct in the summertime, were linked to the increased traffic density at these hours. The scattering and absorption coefficients of residential and long-range transported aerosol (two separate cloud events) were found to be decreased by clouds. The effect was stronger for the scattering than absorption, indicating preferential activation of the more hygroscopic aerosol with higher scattering characteristics.


Tellus B ◽  
2011 ◽  
Vol 63 (4) ◽  
Author(s):  
Alexander Schladitz ◽  
Thomas Müller ◽  
Stephan Nordmann ◽  
Matthias Tesche ◽  
Silke Groß ◽  
...  

2012 ◽  
Vol 12 (2) ◽  
pp. 4719-4754
Author(s):  
A. Leskinen ◽  
A. Arola ◽  
M. Komppula ◽  
H. Portin ◽  
P. Tiitta ◽  
...  

Abstract. We introduce a four-year (2006–2010) continuous data set of aerosol optical properties at Puijo in Kuopio, Finland. We study the annual and diurnal variation of the aerosol scattering and absorption coefficients, hemispheric backscattering fraction, scattering Ångström exponent, and single scattering albedo, whose averages over this period were 11.1 Mm−1 (at 550 nm), 1.5 Mm−1 (at 670 nm), 0.13, 1.9, and 0.83, respectively. The scattering coefficient peaked in the spring and autumn, being 2–4 times those in the summer and winter. An exception was the summer of 2010, when the the scattering coefficient was elevated to ~300 Mm−1 by the plumes from forest fires in Russia. The absorption coefficient peaked in the winter with values of 2–3 times those in the summer. The single scattering albedo was lowest in the winter when more biomass burning derived, soot-containing aerosols were present. The optical properties varied also with wind direction and time of the day, indicating the effect of the local pollutant sources and the age of the particles. Peak values in the single scattering albedo were observed when the wind blew from a paper mill and from the sector without local pollutant sources. These observations were linked to the sulphate-rich aerosol from the paper mill and the oxygenated organics in the aged aerosol, which both are known to increase the scattering characteristics of aerosols. Changes in the single scattering albedo in the morning and afternoon in the summertime were linked to the increased traffic density at these hours. The scattering and absorption coefficients were found to be decreased by clouds. The effect was stronger for the scattering than absorption, indicating preferential activation of the more hygroscopic aerosol with higher scattering characteristics. What happens to the aerosol optical properties during a cloud event when the air masses come from different directions with different local sources, is under a more detailed inspection. Also, more aerosol mass spectrometry data will be analyzed in order to strengthen our knowledge about the role of the chemical composition of the aerosol particles in their activation into cloud droplets.


2021 ◽  
Vol 21 (1) ◽  
pp. 87-128
Author(s):  
Jonas Gliß ◽  
Augustin Mortier ◽  
Michael Schulz ◽  
Elisabeth Andrews ◽  
Yves Balkanski ◽  
...  

Abstract. Within the framework of the AeroCom (Aerosol Comparisons between Observations and Models) initiative, the state-of-the-art modelling of aerosol optical properties is assessed from 14 global models participating in the phase III control experiment (AP3). The models are similar to CMIP6/AerChemMIP Earth System Models (ESMs) and provide a robust multi-model ensemble. Inter-model spread of aerosol species lifetimes and emissions appears to be similar to that of mass extinction coefficients (MECs), suggesting that aerosol optical depth (AOD) uncertainties are associated with a broad spectrum of parameterised aerosol processes. Total AOD is approximately the same as in AeroCom phase I (AP1) simulations. However, we find a 50 % decrease in the optical depth (OD) of black carbon (BC), attributable to a combination of decreased emissions and lifetimes. Relative contributions from sea salt (SS) and dust (DU) have shifted from being approximately equal in AP1 to SS contributing about 2∕3 of the natural AOD in AP3. This shift is linked with a decrease in DU mass burden, a lower DU MEC, and a slight decrease in DU lifetime, suggesting coarser DU particle sizes in AP3 compared to AP1. Relative to observations, the AP3 ensemble median and most of the participating models underestimate all aerosol optical properties investigated, that is, total AOD as well as fine and coarse AOD (AODf, AODc), Ångström exponent (AE), dry surface scattering (SCdry), and absorption (ACdry) coefficients. Compared to AERONET, the models underestimate total AOD by ca. 21 % ± 20 % (as inferred from the ensemble median and interquartile range). Against satellite data, the ensemble AOD biases range from −37 % (MODIS-Terra) to −16 % (MERGED-FMI, a multi-satellite AOD product), which we explain by differences between individual satellites and AERONET measurements themselves. Correlation coefficients (R) between model and observation AOD records are generally high (R>0.75), suggesting that the models are capable of capturing spatio-temporal variations in AOD. We find a much larger underestimate in coarse AODc (∼ −45 % ± 25 %) than in fine AODf (∼ −15 % ± 25 %) with slightly increased inter-model spread compared to total AOD. These results indicate problems in the modelling of DU and SS. The AODc bias is likely due to missing DU over continental land masses (particularly over the United States, SE Asia, and S. America), while marine AERONET sites and the AATSR SU satellite data suggest more moderate oceanic biases in AODc. Column AEs are underestimated by about 10 % ± 16 %. For situations in which measurements show AE > 2, models underestimate AERONET AE by ca. 35 %. In contrast, all models (but one) exhibit large overestimates in AE when coarse aerosol dominates (bias ca. +140 % if observed AE < 0.5). Simulated AE does not span the observed AE variability. These results indicate that models overestimate particle size (or underestimate the fine-mode fraction) for fine-dominated aerosol and underestimate size (or overestimate the fine-mode fraction) for coarse-dominated aerosol. This must have implications for lifetime, water uptake, scattering enhancement, and the aerosol radiative effect, which we can not quantify at this moment. Comparison against Global Atmosphere Watch (GAW) in situ data results in mean bias and inter-model variations of −35 % ± 25 % and −20 % ± 18 % for SCdry and ACdry, respectively. The larger underestimate of SCdry than ACdry suggests the models will simulate an aerosol single scattering albedo that is too low. The larger underestimate of SCdry than ambient air AOD is consistent with recent findings that models overestimate scattering enhancement due to hygroscopic growth. The broadly consistent negative bias in AOD and surface scattering suggests an underestimate of aerosol radiative effects in current global aerosol models. Considerable inter-model diversity in the simulated optical properties is often found in regions that are, unfortunately, not or only sparsely covered by ground-based observations. This includes, for instance, the Sahara, Amazonia, central Australia, and the South Pacific. This highlights the need for a better site coverage in the observations, which would enable us to better assess the models, but also the performance of satellite products in these regions. Using fine-mode AOD as a proxy for present-day aerosol forcing estimates, our results suggest that models underestimate aerosol forcing by ca. −15 %, however, with a considerably large interquartile range, suggesting a spread between −35 % and +10 %.


2014 ◽  
Vol 7 (8) ◽  
pp. 2373-2387 ◽  
Author(s):  
S. Segura ◽  
V. Estellés ◽  
G. Titos ◽  
H. Lyamani ◽  
M. P. Utrillas ◽  
...  

Abstract. Continuous in situ measurements of aerosol optical properties were conducted from 29 June to 29 July 2012 in Granada (Spain) with a seven-wavelength Aethalometer, a Multi-Angle Absorption Photometer, and a three-wavelength integrating nephelometer. The aim of this work is to describe a methodology to obtain the absorption coefficients (babs) for the different Aethalometer wavelengths. In this way, data have been compensated using algorithms which best estimate the compensation factors needed. Two empirical factors are used to infer the absorption coefficients from the Aethalometer measurements: C – the parameter describing the enhancement of absorption by particles in the filter matrix due to multiple scattering of light in the filter matrix – and f, the parameter compensating for non-linear loading effects in the filter matrix. Spectral dependence of f found in this study is not very strong. Values for the campaign lie in the range from 1.15 at 370 nm to 1.11 at 950 nm. Wavelength dependence in C proves to be more important, and also more difficult to calculate. The values obtained span from 3.42 at 370 nm to 4.59 at 950 nm. Furthermore, the temporal evolution of the Ångström exponent of absorption (αabs) and the single-scattering albedo (ω0) is presented. On average αabs is around 1.1 ± 0.3, and ω0 is 0.78 ± 0.08 and 0.74 ± 0.09 at 370 and 950 nm, respectively. These are typical values for sites with a predominance of absorbing particles, and the urban measurement site in this study is such. The babs average values are of 16 ± 10 Mm−1 (at 370 nm) and 5 ± 3 Mm−1 (at 950 nm), respectively. Finally, differences between workdays and Sundays have been further analysed, obtaining higher babs and lower ω0 during the workdays than on Sundays as a consequence of the diesel traffic influence.


2014 ◽  
Vol 7 (2) ◽  
pp. 1871-1916
Author(s):  
S. Segura ◽  
V. Estellés ◽  
G. Titos ◽  
H. Lyamani ◽  
M. P. Utrillas ◽  
...  

Abstract. Continuous in-situ measurements of aerosol optical properties where conducted from 20 June to 20 July in Granada (Spain) with a 7-wavelength Aethalometer, a Multi Angle Absorption Photometer, and a 3-wavelength integrating Nephelometer. The aim of this work is to describe a methodology to obtain the absorption coefficients (babs) for the different Aethalometer wavelengths. In this way, data have been compensated using algorithms which best estimate the compensation factors needed. Two empirical factors are used to infer the absorption coefficients from the Aethalometer measurements: C – the parameter describing the enhancement of absorption by particles in the filter matrix due to multiple scattering of light in the filter matrix; and f – the parameter compensating for non-linear loading effects in the filter matrix. Spectral dependence of f found in this study is not very strong. Values for the campaign lie in the range from 1.15 at 370 nm to 1.11 at 950 nm. Wavelength dependence in C proves to be more important, and also more difficult to calculate. The values obtained span from 3.40 at 370 nm to 4.35 at 950 nm. Furthermore, the temporal evolution of the Ångström exponent of absorption (αabs) and the single scattering albedo (ω0), is presented. On average αabs is around 1.1 ± 0.3, and ω0 is 0.78 ± 0.08 and 0.74 ± 0.09 at 370 and 950 nm, respectively. These are typical values for sites with a predominance of absorbing particles, and the urban measurement site in this study is such. The babs average values are of 16 ± 10 Mm−1 (at 370 nm) and 5 ± 3 Mm−1 (at 950 nm), respectively. Finally, differences between working days and Sunday have been further analyzed, obtaining higher babs and lower ω0 during week than on Sundays as a consequence of the influence of diesel traffic.


2019 ◽  
Vol 19 (14) ◽  
pp. 9181-9208 ◽  
Author(s):  
Kristina Pistone ◽  
Jens Redemann ◽  
Sarah Doherty ◽  
Paquita Zuidema ◽  
Sharon Burton ◽  
...  

Abstract. The total effect of aerosols, both directly and on cloud properties, remains the biggest source of uncertainty in anthropogenic radiative forcing on the climate. Correct characterization of intensive aerosol optical properties, particularly in conditions where absorbing aerosol is present, is a crucial factor in quantifying these effects. The southeast Atlantic Ocean (SEA), with seasonal biomass burning smoke plumes overlying and mixing with a persistent stratocumulus cloud deck, offers an excellent natural laboratory to make the observations necessary to understand the complexities of aerosol–cloud–radiation interactions. The first field deployment of the NASA ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign was conducted in September of 2016 out of Walvis Bay, Namibia. Data collected during ORACLES-2016 are used to derive aerosol properties from an unprecedented number of simultaneous measurement techniques over this region. Here, we present results from six of the eight independent instruments or instrument combinations, all applied to measure or retrieve aerosol absorption and single-scattering albedo. Most but not all of the biomass burning aerosol was located in the free troposphere, in relative humidities typically ranging up to 60 %. We present the single-scattering albedo (SSA), absorbing and total aerosol optical depth (AAOD and AOD), and absorption, scattering, and extinction Ångström exponents (AAE, SAE, and EAE, respectively) for specific case studies looking at near-coincident and near-colocated measurements from multiple instruments, and SSAs for the broader campaign average over the month-long deployment. For the case studies, we find that SSA agrees within the measurement uncertainties between multiple instruments, though, over all cases, there is no strong correlation between values reported by one instrument and another. We also find that agreement between the instruments is more robust at higher aerosol loading (AOD400>0.4). The campaign-wide average and range shows differences in the values measured by each instrument. We find the ORACLES-2016 campaign-average SSA at 500 nm (SSA500) to be between 0.85 and 0.88, depending on the instrument considered (4STAR, AirMSPI, or in situ measurements), with the interquartile ranges for all instruments between 0.83 and 0.89. This is consistent with previous September values reported over the region (between 0.84 and 0.90 for SSA at 550nm). The results suggest that the differences observed in the campaign-average values may be dominated by instrument-specific spatial sampling differences and the natural physical variability in aerosol conditions over the SEA, rather than fundamental methodological differences.


Sign in / Sign up

Export Citation Format

Share Document