First global assessment of modelled aerosol hygroscopicity in the context of other aerosol optical properties

Author(s):  
Maria Ángeles Burgos Simón ◽  
Elisabeth Andrews ◽  
Gloria Titos ◽  
Angela Benedetti ◽  
Huisheng Bian ◽  
...  

<p>The particle hygroscopic growth impacts the optical properties of aerosols and, in turn, affects the aerosol-radiation interaction and calculation of the Earth’s radiative balance. The dependence of particle light scattering on relative humidity (RH) can be described by the scattering enhancement factor f(RH), defined as the ratio between the particle light scattering coefficient at a given RH divided by its dry value.</p><p>The first effort of the AeroCom Phase III – INSITU experiment was to develop an observational dataset of scattering enhancement values at 26 sites to study the uptake of water by atmospheric aerosols, and evaluate f(RH) globally (Burgos et al., 2019). Model outputs from 10 Earth System Models (CAM, CAM-ATRAS, CAM-Oslo, GEOS-Chem, GEOS-GOCART, MERRAero, TM5, OsloCTM3, IFS-AER, and ECMWF) were then evaluated against this in-situ dataset. Building on these results, we investigate f(RH) in the context of other aerosol optical and chemical properties, making use of the same 10 Earth System Models (ESMs) and in-situ measurements as in Burgos et al. (2020) and Titos et al. (2021).</p><p>Given the difficulties of deploying and maintaining instrumentation for long-term, accurate and comprehensive f(RH) observations, it is desirable to find an observational proxy for f(RH). This observation-based proxy would also need to be reproduced in modelling space. Our aim here is to evaluate how ESMs currently represent the relationship between f(RH), scattering Ångström exponent (SAE), and single scattering albedo (SSA). This work helps to identify current challenges in modelling water-uptake by aerosols and their impact on aerosol optical properties within Earth system models.</p><p>We start by analyzing the behavior of SSA with RH, finding the expected increase with RH for all site types and models. Then, we analyze the three variables together (f(RH)-SSA-SAE relationship). Results show that hygroscopic particles tend to be bigger and scatter more than non-hygroscopic small particles, though variability within models is noticeable. This relationship can be further studied by relating SAE to model chemistry, by selecting those grid points dominated by a single chemical component (mass mixing ratios > 90%). Finally, we analyze model performance at three specific sites representing different aerosol types: Arctic, marine and rural. At these sites, the model data can be exactly temporally and spatially collocated with the observations, which should help to identify the models which exhibit better agreement with measurements and for which aerosol type.</p><p> </p><p>Burgos, M.A. et al.: A global view on the effect of water uptake on aerosol particle light scattering. Sci Data 6, 157. https://doi.org/10.1038/s41597-019-0158-7, 2019.</p><p>Burgos, M.A. et al.: A global model–measurement evaluation of particle light scattering coefficients at elevated relative humidity, Atmos. Chem. Phys., 20, 10231–10258, https://doi.org/10.5194/acp-20-10231-2020, 2020.</p><p>Titos, G. et al.: A global study of hygroscopicity-driven light scattering enhancement in the context of other in-situ aerosol optical properties, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2020-1250, in review, 2020.</p>

2020 ◽  
Author(s):  
Maria Ángeles Burgos Simón ◽  

<p>Aerosol optical properties, such as particle light scattering, depend on the particle size and chemical composition, which in turn are affected by the particle’s ability to take up water. Thus, particle hygroscopic growth will have an impact on the optical properties and in turn will affect the aerosol-radiation interaction and the calculations of the Earth’s radiative balance. The dependence of particle light scattering on relative humidity (RH) can be described by the scattering enhancement factor<em> f</em>(RH), defined as the ratio between the particle light scattering coefficient at a given RH divided by its dry value.</p><p>In our previous work (Burgos et al., 2019), we carried out a standardized analysis of scattering in-situ measurements at 26 sites around the globe, creating a benchmark dataset (open access via EBAS, http://ebas.nilu.no/). The project continues with the present work, which is part of the AeroCom phase III INSITU project: Evaluation of hygroscopicity of aerosol optical properties. Here, we present a comprehensive model-measurement evaluation of <em>f</em>(RH) for ten different earth system models. Modelled and measured scattering enhancement factors are compared for 22 sites, representative of Arctic, marine, rural, mountain, urban and desert aerosols.</p><p>Overall, a large variability and diversity in the magnitude of predicted <em>f</em>(RH) amongst the models is found and the modelled <em>f</em>(RH) tends to be overestimated relative to the measurement values. This difference cannot be explained by the aerosol type. Agreement between models and measurements was strongly influenced by the choice of RH<sub>ref</sub>. Models show a significantly larger discrepancy with the observations if model dry conditions are set to RH=0% instead of RH=40%. Model parameterizations of aerosol hygroscopicity and mixing state may be driving the observed diversity among models as well as the discrepancy with measurements. Measurement conditions have to be considered in this type of evaluation, specifically the fact that “dry” measurements may not be “dry” in model terms.</p><p>This work has been submitted to ACPD.</p><p>Burgos, M., Andrews, E., Titos, G., Alados-Arboledas, L., Baltensperger, U., Day, D., Jefferson, A., Kalivitis, N., Mihalopoulos, N., Sherman, J., Sun, J., Weingartner, E., and Zieger, P.: A global view on the effect of water uptake on aerosol particle light scattering, Scientific Data, 6, https://doi.org/10.1038/s41597-019-0158-7, 2019.</p>


2020 ◽  
Vol 20 (17) ◽  
pp. 10231-10258 ◽  
Author(s):  
María A. Burgos ◽  
Elisabeth Andrews ◽  
Gloria Titos ◽  
Angela Benedetti ◽  
Huisheng Bian ◽  
...  

Abstract. The uptake of water by atmospheric aerosols has a pronounced effect on particle light scattering properties, which in turn are strongly dependent on the ambient relative humidity (RH). Earth system models need to account for the aerosol water uptake and its influence on light scattering in order to properly capture the overall radiative effects of aerosols. Here we present a comprehensive model–measurement evaluation of the particle light scattering enhancement factor f(RH), defined as the particle light scattering coefficient at elevated RH (here set to 85 %) divided by its dry value. The comparison uses simulations from 10 Earth system models and a global dataset of surface-based in situ measurements. In general, we find a large diversity in the magnitude of predicted f(RH) amongst the different models, which can not be explained by the site types. Based on our evaluation of sea salt scattering enhancement and simulated organic mass fraction, there is a strong indication that differences in the model parameterizations of hygroscopicity and model chemistry are driving at least some of the observed diversity in simulated f(RH). Additionally, a key point is that defining dry conditions is difficult from an observational point of view and, depending on the aerosol, may influence the measured f(RH). The definition of dry also impacts our model evaluation, because several models exhibit significant water uptake between RH = 0 % and 40 %. The multisite average ratio between model outputs and measurements is 1.64 when RH = 0 % is assumed as the model dry RH and 1.16 when RH = 40 % is the model dry RH value. The overestimation by the models is believed to originate from the hygroscopicity parameterizations at the lower RH range which may not implement all phenomena taking place (i.e., not fully dried particles and hysteresis effects). This will be particularly relevant when a location is dominated by a deliquescent aerosol such as sea salt. Our results emphasize the need to consider the measurement conditions in such comparisons and recognize that measurements referred to as dry may not be dry in model terms. Recommendations for future model–measurement evaluation and model improvements are provided.


2020 ◽  
Author(s):  
María A. Burgos ◽  
Elisabeth J. Andrews ◽  
Gloria Titos ◽  
Angela Benedetti ◽  
Huisheng Bian ◽  
...  

Abstract. The uptake of water by atmospheric aerosols has a pronounced effect on particle light scattering properties which in turn are strongly dependent on the ambient relative humidity (RH). Earth system models need to account for the aerosol water uptake and its influence on light scattering in order to properly capture the overall radiative effects of aerosols. Here we present a comprehensive model-measurement evaluation of the particle light scattering enhancement factor f(RH), defined as the particle light scattering coefficient at elevated RH (here set to 85 %) divided by its dry value. The comparison uses simulations from 10 Earth system models and a global dataset of surface-based in situ measurements. In general, we find a large diversity in the magnitude of predicted f(RH) amongst the different models which can not be explained by the site types. There is strong indication that differences in the model parameterizations of hygroscopicity and perhaps mixing state are driving at least some of the observed diversity in simulated f(RH). An important finding is that the models show a significantly larger discrepancy with the observations if RHref = 0 % is chosen as the model reference RH compared to when RHref = 40 % is used. The multi-site average ratio between model outputs and measurements is 1.64 in the former case and 1.16 in the latter. The overestimation by the models is believed to originate from the hygroscopicity parameterizations at the lower RH range which may not implement all phenomena taking place (i.e. not fully dried particles and hysteresis effects). Our results emphasize the need to consider the measurement conditions in such comparisons and recognize that measurements referred to as dry may not be dry in model terms.


2018 ◽  
Author(s):  
Ufuk Utku Turuncoglu

Abstract. The data volume being produced by regional and global multi-component earth system models are rapidly increasing due to the improved spatial and temporal resolution of the model components, sophistication of the used numerical models in terms of represented physical processes and their non-linear complex interactions. In particular, very short time steps have to be defined in multi-component and multi-scale non-hydrostatic modelling systems to represent the evolution of the fast-moving processes such as turbulence, extra-tropical cyclones, convective lines, jet streams, internal waves, vertical turbulent mixing and surface gravity waves. Consequently, the used small time steps cause extra computation and disk I/O overhead in the used modelling system even if today's most powerful high-performance computing and data storage systems are being considered. Analysis of the high volume of data from multiple earth system model components at different temporal and spatial resolution also poses a challenging problem to efficiently perform integrated data analysis of the massive amounts of data by relying on the conventional post-processing methods available today. This study basically aims to explore the feasibility and added value of integrating existing in-situ visualization and data analysis methods with the model coupling framework (ESMF) to increase interoperability between multi-component simulation code and data processing pipelines by providing easy to use, efficient, generic and standardized modeling environment for earth system science applications. The new data analysis approach enables simultaneous analysis of the vast amount of data produced by multi-component regional earth system models (atmosphere, ocean etc.) during the run process. The methodology aims to create an integrated modeling environment for analyzing fast-moving processes and their evolution in both time and space to support better understanding of the underplaying physical mechanisms. The state-of-art approach can also be used to solve common problems in earth system model development workflow such as designing new sub-grid scale parametrizations (convection, air–sea interaction etc.) that requires inspecting the integrated model behavior in a higher temporal and spatial scale during the run or supporting visual debugging of the multi-component modeling systems, which usually are not facilitated by existing model coupling libraries and modeling systems.


2020 ◽  
Author(s):  
Jonas Gliß ◽  
Augustin Mortier ◽  
Michael Schulz ◽  

<p>Within the framework of the AeroCom (Aerosol Comparisons between Observations and Models) initiative, the present day modelling of aerosol optical properties has been assessed using simulated data representative for the year 2010, from 14 global aerosol models participating in the Phase III Control experiment. The model versions are close or equal to those used for CMIP6 and AerChemMIP and inform also on bias in state of the art Earth-System-Models (ESMs).<br>Modelled column optical depths (total, fine and coarse mode AOD) and Angstrom Exponents (AE) were compared both with ground based observations from the Aerosol Robotic Network (AERONET, version 3) and space based observations from the AATSR instrument. In addition, the modelled AODs were compared with MODIS (Aqua and Terra) data and a satellite AOD data-set (MERGED-FMI) merged from 12 different individual AOD products. Furthermore, for the first time, the modelled near surface scattering (under dry conditions) and absorption coefficients were evaluated against measurements made at low relative humidity at surface in-situ GAW sites. <br>The AeroCom MEDIAN and most of the participating models underestimate the optical properties investigated, relative to remote sensing observations. AERONET AOD is underestimated by 21%+/-17%. Against satellite data, the model AOD biases range from -38% (MODIS-terra) to -17% (MERGED-FMI). Correlation coefficients of model AODs with AERONET, MERGED-FMI and AATSR-SU are high (0.8-0.9) and slightly lower against the two MODIS data-sets (0.6-0.8). Investigation of fine and coarse AODs from the MEDIAN model reveals biases of -10%+/-20% and -41%+/-29% against AERONET and -13% and -24% against AATSR-SU, respectively. The differences in model bias against AERONET and AATSR-SU are in agreement with the established bias of AATSR against AERONET. These results indicate that most of the AOD bias is due to missing coarse AOD in the regions covered by these observations. Underestimates are also found when comparing the models against the surface GAW observations, showing AeroCom MEDIAN mean bias and inter-model variation of -44%+/-22% and -32%+/-34% for scattering and absorption coefficients, respectively. Dry scattering shows higher underestimation than AOD at ambient relative humidity and is in agreement with recent findings that suggest that models tend to overestimate scattering enhancement due to hygroscopic growth. <br>Considerable diversity is found among the models in the simulated near surface absorption coefficients, particularly in regions associated with dust (e.g. Sahara, Tibet), biomass burning (e.g. Amazonia, Central Australia) and biogenic emissions (e.g. Amazonia). Regions associated with high anthropogenic BC emissions such as China and India exhibit comparatively good agreement for all models. Evaluation of modelled column AEs shows an underestimation of 9%+/-24% against AERONET and -21% against AATSR-SU. This suggests that models tend to overestimate particle size, with implications for lifetime and radiative transfer calculations. An investigation of modelled emissions, burdens and lifetimes, mass-specific-extinction coefficients (MECs) and optical depths (ODs) for each species and model reveals considerable diversity in most of these parameters. Inter-model spread of aerosol species lifetime appears to be similar to that of mass extinction coefficients, suggesting that AOD uncertainties are still associated to a broad spectrum of parameterised aerosol processes.</p>


Ocean Science ◽  
2016 ◽  
Vol 12 (2) ◽  
pp. 561-575 ◽  
Author(s):  
Tihomir S. Kostadinov ◽  
Svetlana Milutinović ◽  
Irina Marinov ◽  
Anna Cabré

Abstract. Owing to their important roles in biogeochemical cycles, phytoplankton functional types (PFTs) have been the aim of an increasing number of ocean color algorithms. Yet, none of the existing methods are based on phytoplankton carbon (C) biomass, which is a fundamental biogeochemical and ecological variable and the “unit of accounting” in Earth system models. We present a novel bio-optical algorithm to retrieve size-partitioned phytoplankton carbon from ocean color satellite data. The algorithm is based on existing methods to estimate particle volume from a power-law particle size distribution (PSD). Volume is converted to carbon concentrations using a compilation of allometric relationships. We quantify absolute and fractional biomass in three PFTs based on size – picophytoplankton (0.5–2 µm in diameter), nanophytoplankton (2–20 µm) and microphytoplankton (20–50 µm). The mean spatial distributions of total phytoplankton C biomass and individual PFTs, derived from global SeaWiFS monthly ocean color data, are consistent with current understanding of oceanic ecosystems, i.e., oligotrophic regions are characterized by low biomass and dominance of picoplankton, whereas eutrophic regions have high biomass to which nanoplankton and microplankton contribute relatively larger fractions. Global climatological, spatially integrated phytoplankton carbon biomass standing stock estimates using our PSD-based approach yield  ∼  0.25 Gt of C, consistent with analogous estimates from two other ocean color algorithms and several state-of-the-art Earth system models. Satisfactory in situ closure observed between PSD and POC measurements lends support to the theoretical basis of the PSD-based algorithm. Uncertainty budget analyses indicate that absolute carbon concentration uncertainties are driven by the PSD parameter No which determines particle number concentration to first order, while uncertainties in PFTs' fractional contributions to total C biomass are mostly due to the allometric coefficients. The C algorithm presented here, which is not empirically constrained a priori, partitions biomass in size classes and introduces improvement over the assumptions of the other approaches. However, the range of phytoplankton C biomass spatial variability globally is larger than estimated by any other models considered here, which suggests an empirical correction to the No parameter is needed, based on PSD validation statistics. These corrected absolute carbon biomass concentrations validate well against in situ POC observations.


2019 ◽  
Vol 16 (4) ◽  
pp. 917-926 ◽  
Author(s):  
Jing Wang ◽  
Jianyang Xia ◽  
Xuhui Zhou ◽  
Kun Huang ◽  
Jian Zhou ◽  
...  

Abstract. One known bias in current Earth system models (ESMs) is the underestimation of global mean soil carbon (C) transit time (τsoil), which quantifies the age of the C atoms at the time they leave the soil. However, it remains unclear where such underestimations are located globally. Here, we constructed a global database of measured τsoil across 187 sites to evaluate results from 12 ESMs. The observations showed that the estimated τsoil was dramatically shorter from the soil incubation studies in the laboratory environment (median = 4 years; interquartile range = 1 to 25 years) than that derived from field in situ measurements (31; 5 to 84 years) with shifts in stable isotopic C (13C) or the stock-over-flux approach. In comparison with the field observations, the multi-model ensemble simulated a shorter median (19 years) and a smaller spatial variation (6 to 29 years) of τsoil across the same site locations. We then found a significant and negative linear correlation between the in situ measured τsoil and mean annual air temperature. The underestimations of modeled τsoil are mainly located in cold and dry biomes, especially tundra and desert. Furthermore, we showed that one ESM (i.e., CESM) has improved its τsoil estimate by incorporation of the soil vertical profile. These findings indicate that the spatial variation of τsoil is a useful benchmark for ESMs, and we recommend more observations and modeling efforts on soil C dynamics in regions limited by temperature and moisture.


Tellus B ◽  
2011 ◽  
Vol 63 (4) ◽  
Author(s):  
Alexander Schladitz ◽  
Thomas Müller ◽  
Stephan Nordmann ◽  
Matthias Tesche ◽  
Silke Groß ◽  
...  

2012 ◽  
Vol 12 (15) ◽  
pp. 7231-7249 ◽  
Author(s):  
P. Zieger ◽  
E. Kienast-Sjögren ◽  
M. Starace ◽  
J. von Bismarck ◽  
N. Bukowiecki ◽  
...  

Abstract. This paper presents results of the extensive field campaign CLACE 2010 (Cloud and Aerosol Characterization Experiment) performed in summer 2010 at the Jungfraujoch (JFJ) and the Kleine Scheidegg (KLS) in the Swiss Alps. The main goal of this campaign was to investigate the vertical variability of aerosol optical properties around the JFJ and to show the consistency of the different employed measurement techniques considering explicitly the effects of relative humidity (RH) on the aerosol light scattering. Various aerosol optical and microphysical parameters were recorded using in-situ and remote sensing techniques. In-situ measurements of aerosol size distribution, light scattering, light absorption and scattering enhancement due to water uptake were performed at the JFJ at 3580 m a.s.l.. A unique set-up allowed remote sensing measurements of aerosol columnar and vertical properties from the KLS located about 1500 m below and within the line of sight to the JFJ (horizontal distance of approx. 4.5 km). In addition, two satellite retrievals from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) and the Moderate Resolution Imaging Spectroradiometer (MODIS) as well as back trajectory analyses were added to the comparison to account for a wider geographical context. All in-situ and remote sensing measurements were in clear correspondence. The ambient extinction coefficient measured in situ at the JFJ agreed well with the KLS-based LIDAR (Light Detection and Ranging) retrieval at the altitude-level of the JFJ under plausible assumptions on the LIDAR ratio. However, we can show that the quality of this comparison is affected by orographic effects due to the exposed location of the JFJ on a saddle between two mountains and next to a large glacier. The local RH around the JFJ was often higher than in the optical path of the LIDAR measurement, especially when the wind originated from the south via the glacier, leading to orographic clouds which remained lower than the LIDAR beam. Furthermore, the dominance of long-range transported Saharan dust was observed in all measurements for several days, however only for a shorter time period in the in-situ measurements due to the vertical structure of the dust plume. The optical properties of the aerosol column retrieved from SEVIRI and MODIS showed the same magnitude and a similar temporal evolution as the measurements at the KLS and the JFJ. Remaining differences are attributed to the complex terrain and simplifications in the aerosol retrieval scheme in general.


Sign in / Sign up

Export Citation Format

Share Document