Thermal thrust accelerations on LAGEOS satellites

Author(s):  
David Lucchesi ◽  
Luciano Anselmo ◽  
Massimo Bassan ◽  
Marco Lucente ◽  
Carmelo Magnafico ◽  
...  

<p>Thermal thrust forces are non-conservative forces that act on the surface of a satellite as a result of temperature gradients across its surface. In the case of the older LAGEOS satellite these kinds of perturbations have been well-known since the end of 80s. The main effects are due to the thermal inertia of the corner cube retroreflectors (CCRs) of the satellites with sources the Earth’s infrared radiation and the direct solar visible radiation modulated by the eclipses. However, the solar radiation reflected by the complex Earth-atmosphere system, i.e. the albedo, is also responsible for a non-uniform heating of the satellite surface. We reconsider such perturbations by means of a new thermal model for the satellites called LATOS (LArase Thermal mOdel Solutions), which is not based on averaged equations as those previously developed in the literature. Of course, in such analyses the attitude of the satellite plays an important key role; we modeled it by means of the LASSOS (LArase Satellites Spin mOdel Solutions) model for the evolution of the spin-vector that we have already developed within the LARASE (LAser RAnged Satellites Experiment) research program. We also included the contribution of the Earth’s albedo in the determination of the overall distribution of temperature on the surface of the satellites, that was not considered in previous works. The CERES (Clouds and the Earth’s Radiant Energy System) data have been used to account for this effect. The thermal thrust accelerations have been computed together with their effects on the orbital elements by means of the Gauss equations. These effects are compared with the orbit residuals of the satellites in the same elements, obtained by an independent Precise Orbit Determination (POD), in order to highlight the signature of the unmodeled effects. The improvement in the POD that can be achieved through a better modeling of the thermal thrust perturbations is of fundamental importance for the geophysical products that are determined by means of the analysis of the orbits of the two LAGEOS satellites. Similarly, the measurements in the field of fundamental physics that are obtained with these satellites can benefit from a more precise modeling of their orbit.</p>

2019 ◽  
Author(s):  
Wenying Su ◽  
Patrick Minnis ◽  
Lusheng Liang ◽  
David P. Duda ◽  
Konstantin Khlopenkov ◽  
...  

Abstract. The National Institute of Standards and Technology Advanced Radiometer (NISTAR) onboard Deep Space Climate Observatory (DSCOVR) provides continuous full disc global broadband irradiance measurements over most of the sunlit side of the Earth. The three active cavity radiometers measures the total radiant energy from the sun-lit side of the Earth in shortwave (SW, 0.2–4 µm), total (0.4–100 µm), and near-infrared (NIR, 0.7–4 µm) channels. The Level 1 NISTAR dataset provides the filtered radiances (the ratio between irradiance and solid angle). To determine the daytime top-of-atmosphere (TOA) shortwave and longwave radiative fluxes, the NISTAR measured shortwave radiances must be unfiltered first. An unfiltering algorithm was developed for the NISTAR SW and NIR channels using a spectral radiance data base calculated for typical Earth scenes. The resulting unfiltered NISTAR radiances are then converted to full disk daytime SW and LW flux, by accounting for the anisotropic characteristics of the Earth-reflected and emitted radiances. The anisotropy factors are determined using scene identifications determined from multiple low Earth orbit and geostationary satellites and the angular distribution models (ADMs) developed using data collected by the Clouds and the Earth's Radiant Energy System (CERES). Global annual daytime mean SW fluxes from NISTAR are about 6 % greater than those from CERES, and both show strong diurnal variations with daily maximum-minimum differences as great as 20 Wm−2 depending on the conditions of the sunlit portion of the Earth. They are also highly correlated, having correlation coefficients of 0.89, indicating that they both capture the diurnal variation. Global annual daytime mean LW fluxes from NISTAR are about 3 % greater than those from CERES, but the correlation between them is only about 0.38.


2020 ◽  
Vol 13 (2) ◽  
pp. 429-443 ◽  
Author(s):  
Wenying Su ◽  
Patrick Minnis ◽  
Lusheng Liang ◽  
David P. Duda ◽  
Konstantin Khlopenkov ◽  
...  

Abstract. The National Institute of Standards and Technology Advanced Radiometer (NISTAR) onboard the Deep Space Climate Observatory (DSCOVR) provides continuous full-disk global broadband irradiance measurements over most of the sunlit side of the Earth. The three active cavity radiometers measure the total radiant energy from the sunlit side of the Earth in shortwave (SW; 0.2–4 µm), total (0.4–100 µm), and near-infrared (NIR; 0.7–4 µm) channels. The Level 1 NISTAR dataset provides the filtered radiances (the ratio between irradiance and solid angle). To determine the daytime top-of-atmosphere (TOA) shortwave and longwave radiative fluxes, the NISTAR-measured shortwave radiances must be unfiltered first. An unfiltering algorithm was developed for the NISTAR SW and NIR channels using a spectral radiance database calculated for typical Earth scenes. The resulting unfiltered NISTAR radiances are then converted to full-disk daytime SW and LW flux by accounting for the anisotropic characteristics of the Earth-reflected and emitted radiances. The anisotropy factors are determined using scene identifications determined from multiple low-Earth orbit and geostationary satellites as well as the angular distribution models (ADMs) developed using data collected by the Clouds and the Earth's Radiant Energy System (CERES). Global annual daytime mean SW fluxes from NISTAR are about 6 % greater than those from CERES, and both show strong diurnal variations with daily maximum–minimum differences as great as 20 Wm−2 depending on the conditions of the sunlit portion of the Earth. They are also highly correlated, having correlation coefficients of 0.89, indicating that they both capture the diurnal variation. Global annual daytime mean LW fluxes from NISTAR are 3 % greater than those from CERES, but the correlation between them is only about 0.38.


2018 ◽  
Vol 10 (10) ◽  
pp. 1539 ◽  
Author(s):  
Steven Dewitte ◽  
Nicolas Clerbaux

The Earth Radiation Budget (ERB) at the top of the atmosphere quantifies how the earth gains energy from the sun and loses energy to space. Its monitoring is of fundamental importance for understanding ongoing climate change. In this paper, decadal changes of the Outgoing Longwave Radiation (OLR) as measured by the Clouds and Earth’s Radiant Energy System from 2000 to 2018, the Earth Radiation Budget Experiment from 1985 to 1998, and the High-resolution Infrared Radiation Sounder from 1985 to 2018 are analysed. The OLR has been rising since 1985, and correlates well with the rising global temperature. An observational estimate of the derivative of the OLR with respect to temperature of 2.93 +/− 0.3 W/m 2 K is obtained. The regional patterns of the observed OLR change from 1985–2000 to 2001–2017 show a warming pattern in the Northern Hemisphere in particular in the Arctic, as well as tropical cloudiness changes related to a strengthening of La Niña.


2015 ◽  
Vol 93 (6) ◽  
pp. 597-612 ◽  
Author(s):  
Seiji KATO ◽  
Norman G. LOEB ◽  
David A. RUTAN ◽  
Fred G. ROSE

2021 ◽  
Vol 2 ◽  
Author(s):  
Wenying Su ◽  
Lusheng Liang ◽  
David P. Duda ◽  
Konstantin Khlopenkov ◽  
Mandana M. Thieman

One of the most crucial tasks of measuring top-of-atmosphere (TOA) radiative flux is to understand the relationships between radiances and fluxes, particularly for the reflected shortwave (SW) fluxes. The radiance-to-flux conversion is accomplished by constructing angular distribution models (ADMs). This conversion depends on solar-viewing geometries as well as the scene types within the field of view. To date, the most comprehensive observation-based ADMs are developed using the Clouds and the Earth’s Radiant Energy System (CERES) observations. These ADMs are used to derive TOA SW fluxes from CERES and other Earth radiation budget instruments which observe the Earth mostly from side-scattering angles. The Earth Polychromatic Imaging Camera (EPIC) onboard Deep Space Climate Observatory observes the Earth at the Lagrange-1 point in the near-backscattering directions and offers a testbed for the CERES ADMs. As the EPIC relative azimuth angles change from 168◦ to 178◦, the global daytime mean SW radiances can increase by as much as 10% though no notable cloud changes are observed. The global daytime mean SW fluxes derived after considering the radiance anisotropies at relative azimuth angles of 168◦ and 178◦ show much smaller differences (<1%), indicating increases in EPIC SW radiances are due mostly to changes in viewing geometries. Furthermore, annual global daytime mean SW fluxes from EPIC agree with the CERES equivalents to within 0.5 Wm−2 with root-mean-square errors less than 3.0 Wm−2. Consistency between SW fluxes from EPIC and CERES inverted from very different viewing geometries indicates that the CERES ADMs accurately quantify the radiance anisotropy and can be used for flux inversion from different viewing perspectives.


2021 ◽  
Author(s):  
Hendrik Andersen ◽  
Jan Cermak ◽  
Lukas Zipfel

<p>In this contribution, a significant reduction of low-level marine clouds (LLCs) in the northeastern Pacific is found over a 20-year period in satellite observations and attributed to increasing sea surface temperatures (SSTs).</p><p>LLCs play a key role for the Earth’s energy balance, however, their response to climatic changes is not clear, yet. Here, 20 years of Clouds and the Earth’s Radiant Energy System (CERES) cloud observations are analyzed together with reanalysis data sets in multivariate-regression and machine-learning frameworks to link an observed decrease of LLCs in the subtropical northern Pacific to changes in environmental factors. In the analyses, the observed LCC trend is explained almost exclusively by an increase in SSTs, but counteracted to some extent by increased low-level moisture availability. The influence of other factors such as estimated inversion strength, local winds and aerosols is investigated in the statistical frameworks but found to be negligible when compared to the effect of SST changes. The results provide observational evidence for the low-cloud feedback that back model findings of reduced LCC due to increased SSTs in a changing climate.</p>


2019 ◽  
Vol 11 (5) ◽  
pp. 583 ◽  
Author(s):  
Wentao Duan ◽  
Shaopeng Huang ◽  
Chenwei Nie

A Moon-based Earth radiation observatory (MERO) could provide a longer-term continuous measurement of radiation exiting the Earth system compared to current satellite-based observatories. In order to parameterize the detector for such a newly-proposed MERO, the evaluation of the instrument’s entrance pupil irradiance (EPI) is of great importance. The motivation of this work is to build an EPI estimating model for a simplified single-pixel MERO instrument. The rationale of this model is to sum the contributions of every location in the MERO-viewed region on the Earth’s top of atmosphere (TOA) to the MERO sensor’s EPI, taking into account the anisotropy in the longwave radiance at the Earth TOA. Such anisotropy could be characterized by the TOA anisotropic factors, which can be derived from the Clouds and the Earth’s Radiant Energy System (CERES) angular distribution models (ADMs). As an application, we estimated the shortwave (SW) (0.3–5 µm) and longwave (LW) (5–200 µm) EPIs for a hypothetic MERO instrument located at the Apollo 15 landing site. Results show that the SW EPI varied from 0 to 0.065 W/m2, while the LW EPI ranged between 0.061 and 0.075 W/m2 from 1 to 29 October, 2017. We also utilized this model to predict the SW and LW EPIs for any given location within the MERO-deployable region (region of 80.5°W–80.5°E and 81.5°S–81.5°N on the nearside of the Moon) for the future 18.6 years from October 2017 to June 2036. Results suggest that the SW EPI will vary between 0 and 0.118 W/m2, while the LW EPI will range from 0.056 to 0.081 W/m2. Though the EPI estimating model in this study was built for a simplistic single-pixel instrument, it could eventually be extended and improved in order to estimate the EPI for a multi-pixel MERO sensor.


2010 ◽  
Vol 23 (6) ◽  
pp. 1277-1290 ◽  
Author(s):  
John E. Harries ◽  
Claudio Belotti

Abstract Recent observations and model studies of the earth’s radiative energy balance have focused attention on the earth’s top of atmosphere (TOA) energy balance. This is the balance between the shortwave energy absorbed by the earth, which is represented by a spatially and temporally averaged absorbed flux , and the emitted longwave energy, which is represented by the corresponding averaged emitted flux . The TOA average net flux FN is defined as the difference between the two over the averaged area and time, which may be a local, regional, or global average. A global nonzero net flux represents a measure of imbalance between the energy being absorbed and emitted by the earth for the time interval in question. It is of interest to ask what the natural variability of the net flux might be and whether, during times of climate change, signals of important climate change processes might be detected against this natural background variation; examples of these signals include evidence of ocean heat storage, the effects of El Niño, and the radiative effects of volcanic eruptions. In this paper, the authors review the significance of the net flux, survey the observational evidence from a range of satellite instruments over several decades, and analyze some of the most recent observations from the Clouds and the Earth’s Radiant Energy System (CERES) program to determine what signals and what natural variability might be expected in the TOA net flux. Based on this analysis, the use of broadband radiation measurements for global climate change studies can be assessed.


Sign in / Sign up

Export Citation Format

Share Document