Observed reduction in low-level clouds over the northeastern Pacific attributed to increase in sea surface temperatures

Author(s):  
Hendrik Andersen ◽  
Jan Cermak ◽  
Lukas Zipfel

<p>In this contribution, a significant reduction of low-level marine clouds (LLCs) in the northeastern Pacific is found over a 20-year period in satellite observations and attributed to increasing sea surface temperatures (SSTs).</p><p>LLCs play a key role for the Earth’s energy balance, however, their response to climatic changes is not clear, yet. Here, 20 years of Clouds and the Earth’s Radiant Energy System (CERES) cloud observations are analyzed together with reanalysis data sets in multivariate-regression and machine-learning frameworks to link an observed decrease of LLCs in the subtropical northern Pacific to changes in environmental factors. In the analyses, the observed LCC trend is explained almost exclusively by an increase in SSTs, but counteracted to some extent by increased low-level moisture availability. The influence of other factors such as estimated inversion strength, local winds and aerosols is investigated in the statistical frameworks but found to be negligible when compared to the effect of SST changes. The results provide observational evidence for the low-cloud feedback that back model findings of reduced LCC due to increased SSTs in a changing climate.</p>

1997 ◽  
Vol 102 (C13) ◽  
pp. 27835-27860 ◽  
Author(s):  
Alexey Kaplan ◽  
Yochanan Kushnir ◽  
Mark A. Cane ◽  
M. Benno Blumenthal

2004 ◽  
Vol 4 (2) ◽  
pp. 323-337 ◽  
Author(s):  
D. Cesini ◽  
S. Morelli ◽  
F. Parmiggiani

Abstract. Numerical simulations of a bora event, recently occurred in the Adriatic area, are presented. Two reference runs at different horizontal resolution (about 20km and 8km) describe the case. Initial conditions for the atmospheric model integration are obtained from ECMWF analyses. Satellite data are used for comparisons. A further run at horizontal resolution of 8km, using initial satellite sea surface temperatures, is performed to evaluate their impact on the low level wind over the Adriatic Sea. All the simulations are carried out with 50 layers in the vertical. Numerous aspects of the simulations are found to be in agreement with the understanding as well as the observational knowledge of bora distinctive characteristics. Satellite data and model results indicate that a more realistic simulation of the bora wind over the sea is achieved using the model with 8km horizontal resolution and that the low level wind in this case is sensitive, though weakly, to the difference between the used sea surface temperature fields. Simulation results also show that both wind intensity and the area around wind peaks tend to increase when relatively higher sea surface temperatures are used.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1870
Author(s):  
Matteo Gentilucci ◽  
Abdelraouf A. Moustafa ◽  
Fagr Kh. Abdel-Gawad ◽  
Samira R. Mansour ◽  
Maria Rosaria Coppola ◽  
...  

This paper characterizes non-indigenous fish species (NIS) and analyses both atmospheric and sea surface temperatures for the Mediterranean coast of Egypt from 1991 to 2020, in relation to previous reports in the same areas. Taxonomical characterization depicts 47 NIS from the Suez Canal (Lessepsian/alien) and 5 from the Atlantic provenance. GenBank accession number of the NIS mitochondrial gene, cytochrome oxidase 1, reproductive and commercial biodata, and a schematic Inkscape drawing for the most harmful Lessepsian species were reported. For sea surface temperatures (SST), an increase of 1.2 °C to 1.6 °C was observed using GIS software. The lack of linear correlation between annual air temperature and annual SST at the same detection points (Pearson r) could suggest a difference in submarine currents, whereas the Pettitt homogeneity test highlights a temperature breakpoint in 2005–2006 that may have favoured the settlement of non-indigenous fauna in the coastal sites of Damiette, El Arish, El Hammam, Alexandria, El Alamain, and Mersa Matruh, while there seems to be a breakpoint present in 2001 for El Sallum. This assessment of climate trends is in good agreement with the previous sightings of non-native fish species. New insights into the assessment of Egyptian coastal climate change are discussed.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Niels J. de Winter ◽  
Inigo A. Müller ◽  
Ilja J. Kocken ◽  
Nicolas Thibault ◽  
Clemens V. Ullmann ◽  
...  

AbstractSeasonal variability in sea surface temperatures plays a fundamental role in climate dynamics and species distribution. Seasonal bias can also severely compromise the accuracy of mean annual temperature reconstructions. It is therefore essential to better understand seasonal variability in climates of the past. Many reconstructions of climate in deep time neglect this issue and rely on controversial assumptions, such as estimates of sea water oxygen isotope composition. Here we present absolute seasonal temperature reconstructions based on clumped isotope measurements in bivalve shells which, critically, do not rely on these assumptions. We reconstruct highly precise monthly sea surface temperatures at around 50 °N latitude from individual oyster and rudist shells of the Campanian greenhouse period about 78 million years ago, when the seasonal range at 50 °N comprised 15 to 27 °C. In agreement with fully coupled climate model simulations, we find that greenhouse climates outside the tropics were warmer and more seasonal than previously thought. We conclude that seasonal bias and assumptions about seawater composition can distort temperature reconstructions and our understanding of past greenhouse climates.


2018 ◽  
Vol 14 (6) ◽  
pp. 901-922 ◽  
Author(s):  
Mari F. Jensen ◽  
Aleksi Nummelin ◽  
Søren B. Nielsen ◽  
Henrik Sadatzki ◽  
Evangeline Sessford ◽  
...  

Abstract. Here, we establish a spatiotemporal evolution of the sea-surface temperatures in the North Atlantic over Dansgaard–Oeschger (DO) events 5–8 (approximately 30–40 kyr) using the proxy surrogate reconstruction method. Proxy data suggest a large variability in North Atlantic sea-surface temperatures during the DO events of the last glacial period. However, proxy data availability is limited and cannot provide a full spatial picture of the oceanic changes. Therefore, we combine fully coupled, general circulation model simulations with planktic foraminifera based sea-surface temperature reconstructions to obtain a broader spatial picture of the ocean state during DO events 5–8. The resulting spatial sea-surface temperature patterns agree over a number of different general circulation models and simulations. We find that sea-surface temperature variability over the DO events is characterized by colder conditions in the subpolar North Atlantic during stadials than during interstadials, and the variability is linked to changes in the Atlantic Meridional Overturning circulation and in the sea-ice cover. Forced simulations are needed to capture the strength of the temperature variability and to reconstruct the variability in other climatic records not directly linked to the sea-surface temperature reconstructions. This is the first time the proxy surrogate reconstruction method has been applied to oceanic variability during MIS3. Our results remain robust, even when age uncertainties of proxy data, the number of available temperature reconstructions, and different climate models are considered. However, we also highlight shortcomings of the methodology that should be addressed in future implementations.


Sign in / Sign up

Export Citation Format

Share Document