Heavy minerals analysis on tsunami deposits from Misawa (Japan)

Author(s):  
João Cascalho ◽  
Ana Abrantes ◽  
Pedro Costa ◽  
Piero Bellanova ◽  
Mike Frenken ◽  
...  

<p>Heavy minerals in tsunami and storm deposits have been used to establish sediment sources and to infer the inundation and backwash phases (Morton et al., 2007). The abundance of these minerals is dependent on the hydrodynamic conditions that existed during transport and depositional stages. Overall, heavy mineral analysis allowed interpretations on sediment dynamics. Heavy mineral studies on tsunami deposits allowed the establishment of source-to-sink relationships thus, contributed to establish transport paths and inundation routes (Jagodzinski et al., 2012; Putra et al., 2013; Costa et al., 2015; Cascalho et al., 2016).</p><p>After the Tohoku-oki tsunami event, GeoSlicer were excavated and tsunami imprints were retrieved from the slices in Misawa coastal area (Japan). Heavy minerals from thirty-six samples were analyzed. Heavy minerals in the sediment fraction of 0.125-0.500 mm were separated by centrifugation in sodium polytungstate (2.90 kg/m<sup>3</sup>) and recovered by partial freezing with liquid nitrogen. An average of about 220 transparent heavy-mineral grains per sample were identified and counted under a petrographic microscope. Heavy minerals not mounted on glass slides were subjected to the ferromagnetic separation using a Frantz Isodynamic Magnetic apparatus to estimate the weight of magnetite in each sample.</p><p>Heavy-mineral weight in total sediment fraction presented a mean value of 31%, ranging between 18 and 59%. The magnetite weight percentage present in the heavy-mineral fraction has a mean of 26% ranging between 14 and 43%.</p><p>Considering the mean frequency of the transparent heavy minerals it was identified the presence of orthopyroxenes (67%), followed by clinopyroxenes (30%).</p><p>These results indicate that the main original source of heavy minerals are basic volcanic rocks. The wide ranges of variation of the total heavy mineral fraction and the magnetite present in that fraction provides useful information about the flow competence of the tsunami waves. The samples that reveal higher concentration in total heavy minerals tend to be richer in magnetite. These results could be used to pinpoint water flow conditions (velocity thresholds) promoting grain sorting leading to the formation of layers enriched in heavy minerals. Confirming previous cases, heavy mineral analysis in Misawa tsunami deposit seems to provide useful insights into tsunami-derived sediment dynamic. </p><p>      </p><p>Cascalho, J., Costa, P., Dawson, S., Milne, F. and Rocha, A. 2016. Heavy mineral assemblages of the Storegga tsunami deposit. Sedimentary geology, 334, 21-33.     </p><p>Costa, P.J., Andrade, C., Cascalho, J., Dawson, A.G., Freitas, M.C., Paris, R. and Dawson, S., 2015. Onshore tsunami sediment transport mechanisms inferred from heavy mineral assemblages. The Holocene, 25(5), pp.795-809.</p><p>Jagodziński, R., Sternal, B., Szczuciński, W., Chagué-Goff, C. and Sugawara, D., 2012. Heavy minerals in the 2011 Tohoku-oki tsunami deposits—insights into sediment sources and hydrodynamics. Sedimentary Geology, 282, pp.57-64.</p><p>Morton, R.A., Gelfenbaum, G. and Jaffe, B.E., 2007. Physical criteria for distinguishing sandy tsunami and storm deposits using modern examples. Sedimentary Geology, 200(3-4), pp.184-207.</p><p>Putra, P.S., Nishimura, Y., Nakamura, Y. and Yulianto, E., 2013. Sources and transportation modes of the 2011 Tohoku-Oki tsunami deposits on the central east Japan coast. Sedimentary Geology, 294, pp.282-293.</p><p>The author would like to acknowledge the financial support FCT through project UIDB/50019/2020 – IDL and by FCT OnOff project PTDC/CTAGEO/28941/2017.</p><p> </p>

2017 ◽  
Vol 456 (1) ◽  
pp. 167-190 ◽  
Author(s):  
Pedro J. M. Costa ◽  
G. Gelfenbaum ◽  
S. Dawson ◽  
S. La Selle ◽  
F. Milne ◽  
...  

Geologos ◽  
2013 ◽  
Vol 19 (1-2) ◽  
pp. 5-23 ◽  
Author(s):  
Bogusław Marcinkowski ◽  
Elżbieta Mycielska-Dowgiałło

Abstract The composition of heavy-mineral assemblages is one of the main textural features of sediments because they can have significant value for the interpretation of, among others, their depositional environment, their depositional processes, and their stratigraphic position. Distinctive features of heavy minerals include their resistance to chemical weathering and mechanical abrasion, their habit, and their density. These parameters are the most widely used in the heavy-mineral research of Quaternary deposits in Poland, as well as in such research in other countries conducted by Polish scientists. Several other heavy-mineral parameters can also be used in various types of interpretation. It is discussed whether heavy-mineral analysis is decisive in the evaluation of deposits or whether it plays mainly a role that may support evidence obtained by other types of analysis. The attention is mainly devoted to transparent heavy minerals; the significance of opaque heavy minerals for interpretational purposes is only mentioned.


Minerals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 347
Author(s):  
Jing Feng ◽  
Wei Wang

Typical barrier-lagoon systems are developed at Dongchong and Xichong on the southern coast of the Dapeng Peninsula of Guangdong, China. This paper studies the evolution of the barrier coasts of the peninsula, using the examples of the Dongchong and Xichong Bays. The Holocene stratigraphic records from borehole drilling on the coast of Dongchong and Xichong show that lagoon sediments are overlaid with beach deposits, indicating that the barriers migrated landward and climbed over the lagoon sediments when the shoreface retreated during the Holocene transgression, reaching the present positions after 7–8 ka BP. Heavy mineral analysis in this paper shows that: (1) the ancient beach sediments of the two bays have the same heavy mineral assemblages, which are different from those of modern beaches; (2) the present beaches of the two bays have different heavy mineral assemblages, even they are located less than 3000 m from each other on the same coast. This supports the hypothesis that the barriers originally came from the inner shelves during the Holocene transgression, but draws a new conclusion that the source of the beach sediments changed to inland rivers over the last thousand years because of a lack of sediment source from the sea floor.


1935 ◽  
Vol 72 (8) ◽  
pp. 341-350
Author(s):  
J. T. Stark ◽  
F. F. Barnes

The correlation of isolated outcrops of igneous rocks where two or more similar intrusions are exposed is a difficult problem which is not always solved by thin sections or field studies. Such a problem was encountered in mapping the closely related Pikes Peak and Silver Plume granites of pre-Cambrian age in the Sawatch Range of central Colorado (Fig. 1). A comparison of the heavy minerals of the isolated outcrops with those of known granites was undertaken; and for this purpose large samples, suitable for crushing and heavy mineral analysis, were collected from various points within the areas of each batholith, and from the small outcrops whose age was in question. It was hoped that sufficient similarities in the heavy mineral assemblages might be established to be of value in making correlations. Furthermore, as work on the heavy minerals in igneous rocks is still in the experimental stage, a series of analyses from various parts of a given batholith should throw some light on the question of whether heavy minerals may be distinct and constant enough to be characteristic and so give a reliable means of correlation of isolated exposures.


1992 ◽  
Vol 129 (5) ◽  
pp. 573-580 ◽  
Author(s):  
A. C. Morton ◽  
J. R. Davies ◽  
R. A. Waters

AbstractA pilot study has demonstrated that heavy mineral analysis is a useful guide to the provenance of Silurian turbidites in the Southern Welsh Basin. The results confirm the sedimentological evidence for two distinct source areas of coarse clastic detritus, one lying to the south and the other to the east. They also provide mineralogical criteria by which the two source areas may be distinguished. The southern area provided material with relatively low mineral diversity, and is characteristic in having low rutile/zircon ratios, whereas the eastern source provided more diverse assemblages, generally with high rutile/zircon ratios. The southern source shows variations in terms of apatite/tourmaline ratio, with the older Aberystwyth Grits Group tending to contain relatively low apatite compared with the younger Cwmystwyth Grits Group (Rhuddnant and Pysgotwr Grits formations). There is evidence for polycyclic material and volcanic detritus in both southerly and easterly derived samples; however, easterly-sourced sandstones apparently tapped a more lithologically-diverse terrain.


1962 ◽  
Vol S7-IV (2) ◽  
pp. 264-272 ◽  
Author(s):  
Jean Demangeot ◽  
M. Ters

Abstract Heavy mineral analysis of samples from the Adriatic side of the Abruzzi mountains gives an indication of the age of the surface of the Gran Sasso plateaus and of the Quaternary continental formations. The absence of heavy minerals characteristic of the Pontian molasse suggests the possibility that the plateaus were never completely covered by the Pontian sea. The isolated molasse deposits which have been reported from the Gran Sasso may have been deposited in small gulfs along the shore of the sea. The Quaternary marine sediments have been dated by their fossil content. The majority of the Quaternary deposits, however, are gravels, breccias and eolian loams which contain neither fossils nor pollen. Cinder showers from Quaternary eruptions on the Tyrrhenian side of Abruzzi were carried by the wind and deposited volcanic minerals which were incorporated in the Quaternary material of the central Apennines. Heavy mineral analysis of the deposits containing these minerals reveals associations which provide a basis for determining the chronology of the Quaternary strata.


Minerals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 385 ◽  
Author(s):  
Lünsdorf ◽  
Kalies ◽  
Ahlers ◽  
Dunkl ◽  
von Eynatten

A significant amount of information on sedimentary provenance is encoded in the heavy minerals of a sediment or sedimentary rock. This information is commonly assessed by optically determining the heavy-mineral assemblage, potentially followed by geochemical and/or geochronological analysis of specific heavy minerals. The proposed method of semi-automated heavy-mineral analysis by Raman spectroscopy (Raman-HMA) aims to combine the objective mineral identification capabilities of Raman spectroscopy with high-resolution geochemical techniques applied to single grains. The Raman-HMA method is an efficient and precise tool that significantly improves the comparability of heavy-mineral data with respect to both overall assemblages and individual compositions within solid solution series. Furthermore, the efficiency of subsequent analysis is increased due to identification and spatial referencing of the heavy minerals in the sample slide. The method is tested on modern sediments of the Fulda river (central Germany) draining two Miocene volcanic sources (Vogelsberg, Rhön) resting on top of Lower Triassic siliciclastic sediments. The downstream evolution of the volcanic detritus is documented and the capability to analyze silt-sized grains has revealed an additional eolian source. This capability also poses the possibility of systematically assessing the heavy-mineral assemblages of shales, which are often disregarded in sedimentary provenance studies.


2020 ◽  
Vol 23 (3-4) ◽  
Author(s):  
Jasper VERHAEGEN

The Neogene units of Belgium cannot always be easily distinguished based on visual inspection and correlation across the basin is not straightforward. To aid in the stratigraphic interpretation of units, the discriminatory potential of heavy minerals has been determined. In this study, heavy mineral composition is combined with grain size analysis, providing information on the bulk sediment. Based on heavy mineral composition important interpretations could be made, such as (1) a different provenance between the Dessel Member and the Hageland Diest sand, making it improbable that they were deposited at the same time, (2) the Kasterlee-sensu-Gulinck unit of the eastern Antwerp Campine should be redefined as a lower Mol Formation unit or as a lateral equivalent of the typical Kasterlee Formation to the west, affected strongly by southern continental sediment input, and (3) the Waubach Member in the Ruhr Valley Graben should be split into two separate units, with the upper unit correlated with the Mol Formation and the lower unit, possibly the Inden Formation, correlated with the Diest Formation and Kasterlee Formation. The ‘X’ unit of the Maaseik core is likely a local transitional unit which cannot be directly correlated with a unit in the Campine Basin.


2019 ◽  
Vol 157 (6) ◽  
pp. 929-938 ◽  
Author(s):  
S Andò ◽  
S Aharonovich ◽  
A Hahn ◽  
SC George ◽  
PD Clift ◽  
...  

AbstractA multidisciplinary mineralogical, geochemical and biomarker study of Indus Fan sediments cored during International Ocean Discovery Program (IODP) Expedition 355 to the Laxmi Basin was carried out to define the different compositional signatures of sand, silt and clay. Upper Pliocene – lower Pleistocene turbidites from sites U1456 and U1457 were selected as the best candidates for this study. The integrated dataset presented here was obtained by coupling traditional and innovative bulk-sediment and single-mineral techniques on the same samples. Turbiditic deposits mostly consist of medium to fine silt, including rich and diverse heavy-mineral assemblages. Such a fine grain size forced us to push the limits of high-resolution quantitative heavy-mineral analysis down to as low as 5 μm. Heavy-mineral analysis allowed us to establish a Himalayan origin of the detritus in the studied turbidites. Heavy-mineral concentrations are higher in channel-fill than in overbank deposits. Mineralogical and geochemical data concur in revealing that fast-settling ultradense minerals such as zircon are preferentially concentrated in channel-fill deposits, whereas the top of overbank deposits are notably enriched with slow-settling platy phyllosilicates. Biomarker analysis represents a most suitable complementary technique that is able to investigate the provenance signature of the finer sediment fraction, largely consisting of clay. This technique allowed us to identify a largely terrigenous origin of organic matter at Site U1456 and an open marine origin at Site U1457. The latter site lies closer to the Laxmi Ridge, where thermal maturity increases with depth to reach the early oil window (127°C at c. 320 m below the seafloor).


Geologos ◽  
2013 ◽  
Vol 19 (1-2) ◽  
pp. 147-158 ◽  
Author(s):  
A.N. Derkachev ◽  
N.A. Nikolaeva

Abstract The possible reconstruction of ancient sedimentary environments on the basis of heavy-minerals assemblages is presented by means of discriminant lithogeodynamic diagrams that compare modern and ancient sedimentary environments. This is exemplified by Mesozoic-Cenozoic deposits recovered from ODP cores obtained from the Philippine and Japan Seas, the Japan Trench and the North Atlantic, as well as by deposits from folded areas onshore. On the basis of the comparative analysis, it can be deduced that the main tendencies in mineral assemblages of modern deposits that depend on the structural-tectonic conditions, are fairly well preserved in Cenozoic deposits (including the deposits recovered by ODP drilling). On the other hand, the environmental reconstruction of folded and faulted pre-Cenozoic continental areas on the basis of their heavy-mineral assemblages, by comparing them with supposed modern analogs, is not always possible with much certainty. The main reasons may be either a considerable change in the composition of the initial (primary) mineral assemblages as a result of intralayer solution or the absence, at the time of deposition, of geodynamic environments that closely resembled modern ones.


Sign in / Sign up

Export Citation Format

Share Document