Dynamics of redox potential and nutrient turnover in dry floodplain soils during a simulated rain fall event

Author(s):  
Johanna Schlögl ◽  
Lena Cramaro ◽  
Christian Griebler ◽  
Stefan B. Haderlein

<p>Floodplain soils experience highly dynamic wet and dry cycles that trigger changes in redox conditions and as such play a crucial role for environmental nutrient cycling and pollutant fate.</p><p>To elucidate the effects of varying water saturation on the predominant biogeochemical processes and their dynamics we simulated a heavy rain fall event with subsequent steady rain over ten consecutive days at a plot of arable soil in a floodplain near Tübingen, southwest Germany. We monitored how soil redox conditions, redox sensitive soil constituents and microbial communities responded to changing water saturation.</p><p> </p><p>The experiment design was fully randomized comprising irrigated plots mimicking rain events and dry controls.</p><p>Multi-level redox probes recorded in situ redox potentials at 10 cm intervals down to 90 cm depth on irrigated and dry plots. The initially dry soil showed redox potentials of +600 mV. The simulated heavy rain fall provoked a drop in redox potentials within hours in depths down to 40 cm and within a delay of 1 to 2 days in depths down to 60 cm. Subsequent steady rain lead to a decrease of the redox potentials to a minimum of -200 mV to -300 mV in depths of 20 to 30 cm and -100 mV in depths of 40 to 50 cm.</p><p>Soil cores were retrieved throughout the experiment to identify microbial communities and to determine depth profiles of nitrate, ammonium, adsorbed and poorly crystalline iron as well as total iron, and sulfide and sulfate in the pore water and the solid phase.</p><p> </p><p>The high resolution temporal data on changes in redox potential, soil chemistry and soil microbial communities will be presented and discussed in terms of the predominant biogeochemical processes in the soil profile.</p>

2020 ◽  
Author(s):  
Siul Ruiz ◽  
Daniel McKay Fletcher ◽  
Andrea Boghi ◽  
Katherine Williams ◽  
Simon Duncan ◽  
...  

<div> <p>Soil microbial communities contribute many ecosystem services including soil structure maintenance, crop synergy, and carbon sequestration. However, it is not fully understood how the health of microbial communities is effected by fertilization at the pore scale. This study investigates the nature of nitrogen (N) transport and reactions at the soil pore scale in order to better understand the influence of soil structure and moisture content on microbial community health. Using X-ray Computed Tomography (XRCT) scans, we reconstructed a microscale description of a dry soil-pore geometry as a computational mesh. Solving two-phase water/air models produced pore-scale water distributions at 15, 30 and 70% water-filled pore volume. The model considers ammonium (NH<sub>4</sub><sup>+</sup>), nitrate (NO<sub>3</sub><sup>-</sup>) and dissolved organic N (DON), and includes N immobilization, ammonification and nitrification processes, as well as diffusion in soil-solution. We simulated the dissolution of a fertilizer pellet and a pore scale N cycle at the three different water saturation conditions. To aid interpretation of the model results, microbial activity at a range of N concentrations was quantified experimentally using labelled C to infer microbial activity based on CO<sub>2</sub> respiration measurements in bulk soil. The pore-scale model showed that the diffusion and concentration of N in water films is critically dependent upon soil moisture and N species. We predicted that the maximum NH<sub>4</sub><sup>+</sup> and NO<sub>3</sub><sup>-</sup> concentrations in soil solution around the pellet under low water saturation conditions (15%) are in the order of 1x10<sup>3</sup> and 1x10<sup>4</sup> mol m<sup>-3</sup> respectively (1-10 M), and under higher water saturation conditions (70%) where on the order of 2x10<sup>2</sup> and 1x10<sup>3</sup> mol m<sup>-3</sup>, respectively (0.1-1 M). Supporting experimental evidence regarding microbial respiration suggests that these concentrations at the pore-scale would be sufficient to reduce microbial activity in the zone immediately around the fertilizer pellet (ranging from 0.9 to 3.8 mm depending on soil moisture status), causing a major loss of soil biological activity by up to 90%. This model demonstrates the importance of pore-scale processes in regulating N movement in soil with special capability to predict the effects of fertilizers on rhizosphere-scale processes and the root microbiome.</p> </div>


2013 ◽  
Vol 1518 ◽  
pp. 211-216
Author(s):  
L. Duro ◽  
C. Domènech ◽  
M. Grivé ◽  
G. Roman-Ross ◽  
J. Bruno ◽  
...  

ABSTRACTThe evaluation of the redox conditions in the Swedish ILW-LLW repository, SFR-1, is of high relevance in the performance assessment. The SFR-1 repository contains heterogeneous types of wastes, of different activity levels and with different materials in the waste and in the matrices and packaging. Steel and concrete-based materials are ubiquitous in the repository. The assessment presented in this work is based on the evaluation of the redox conditions and of the reducing capacity in 15 individual and representative waste package types in SFR-1. A combination of the individual models is used to determine the redox evolution of the different vaults in the repository. The results of the model indicate that in the initial time after repository closure, O2 is consumed through degradation of organic matter and metal corrosion during the initial time after repository closure. Afterwards, the system is kept under reducing conditions for long time periods, and H2(g) is generated due to the anoxic corrosion of steel forming magnetite as main corrosion product. The time at which steel is depleted varies with the amount and characteristics of steel and ranges from 5,000 to over 60,000 years. After complete steel corrosion, the reducing capacity of the system is mainly given by magnetite. The calculated redox potential under the chemical conditions imposed by the massive amounts of cements in the repository is in the order of -0.75 V (at pH 12.5). In case of assuming that the Eh of the system is controlled by the interaction between Fe(III)/Magnetite as a result of groundwater/magnetite interactions, redox potentials in the range -0.7 to -0.01V are calculated, considering the uncertainty in the pH prevalent in the system If the absence of oxic disturbances the Eh of the repository system would be kept reducing. In the event of oxidising and diluted glacial meltwater intrusion, magnetite would gradually convert into Fe(III) oxides, buffering the redox potential of the system and preventing it from oxidation for long time periods.


2021 ◽  
Vol 97 (4) ◽  
Author(s):  
Lucas Dantas Lopes ◽  
Jingjie Hao ◽  
Daniel P Schachtman

ABSTRACT Soil pH is a major factor shaping bulk soil microbial communities. However, it is unclear whether the belowground microbial habitats shaped by plants (e.g. rhizosphere and root endosphere) are also affected by soil pH. We investigated this question by comparing the microbial communities associated with plants growing in neutral and strongly alkaline soils in the Sandhills, which is the largest sand dune complex in the northern hemisphere. Bulk soil, rhizosphere and root endosphere DNA were extracted from multiple plant species and analyzed using 16S rRNA amplicon sequencing. Results showed that rhizosphere, root endosphere and bulk soil microbiomes were different in the contrasting soil pH ranges. The strongest impact of plant species on the belowground microbiomes was in alkaline soils, suggesting a greater selective effect under alkali stress. Evaluation of soil chemical components showed that in addition to soil pH, cation exchange capacity also had a strong impact on shaping bulk soil microbial communities. This study extends our knowledge regarding the importance of pH to microbial ecology showing that root endosphere and rhizosphere microbial communities were also influenced by this soil component, and highlights the important role that plants play particularly in shaping the belowground microbiomes in alkaline soils.


2021 ◽  
Vol 773 ◽  
pp. 145640
Author(s):  
Lili Rong ◽  
Longfei Zhao ◽  
Leicheng Zhao ◽  
Zhipeng Cheng ◽  
Yiming Yao ◽  
...  

Ecosystems ◽  
2021 ◽  
Author(s):  
Susana Rodríguez-Echeverría ◽  
Manuel Delgado-Baquerizo ◽  
José A. Morillo ◽  
Aurora Gaxiola ◽  
Marlene Manzano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document