scholarly journals Imaging seafloor instabilities using very high-resolution deep-towed multichannel seismic data in the Gulf of Lions (NW Mediterranean)

Author(s):  
Shray Badhani ◽  
Antonio Cattaneo ◽  
Florent Colin ◽  
Bruno Marsset ◽  
Roger Urgeles ◽  
...  

<p><span>The Gulf of Lions (GoL) is a passive margin of about 200 km long and 70 km wide with main sediment supply from the Rhone River supplying Alpine sediments to the Rhone delta. Submarine landslides in the GoL are widespread from the upper slope to the deep basin, within the canyon flanks and in the interfluves of major canyons. The two main submarine landslides present in the GoL are the Eastern Rhône Interfluve Slide (ERIS) and an unnamed slide complex on the western side of the Petit Rhone Canyon. Their resulting mass transport deposits (MTDs), the Rhone Eastern MTD (REMTD) and the Rhone Western MTD (RWMTD) have previously been described in detail in several studies. However, due to the lack of high-resolution multidisciplinary datasets, such as high-resolution seismic, sediment cores, and </span><em><span>in-situ </span></em><span>geotechnical measurements, a detailed analysis of weak layers and preconditioning factors was never performed. Here, we present a suite of a multidisciplinary dataset; particularly very high-resolution deep-towed multichannel seismic data acquired using Ifremer’s in-house acquisition system SYSIF (SYstème SIsmique de Fond) to assess seafloor instabilities in the GoL. The objectives of this study are twofold and aimed at 1) using deep-towed multichannel seismic data to capture the internal structure of the mass-wasting products previously imaged as seismically transparent or chaotic intervals in conventional seismic data; 2) using multidisciplinary dataset to analyse the basal surfaces of slope failures in the GoL. For the first time, the newly-acquired SYSIF data show in unprecedented detail the internal structure of mass-transport deposit along with small-scale slope failures. We present here an example of a failure that consists of slide blocks, folded and faulted strata with remnant stratigraphy previously associated with a transparent or chaotic facies in the conventional reflection seismic data. The combination of deep-towed seismic and sedimentological data, as well as </span><em><span>in-situ </span></em><span>measurements allowed us to analyse and characterize the nature of the basal surface of the slope failures in greater detail. We show that the basal surfaces of the recurring slope failures mainly consist of fine-grained clay-rich sediments as compared to turbiditic sequences typical of Rhone turbiditic system. Such observations suggest that greater degree of lithological heterogeneity in sedimentary strata promotes slope failure in the GoL, most likely related to higher liquefaction potential of coarser-grained material, excess pore pressure and possibly resulting variation in sediment strength.</span></p>

2021 ◽  
Author(s):  
Ana M. Mancho ◽  
Guillermo García-Sánchez ◽  
Antonio G. Ramos ◽  
Josep Coca ◽  
Begoña Pérez-Gómez ◽  
...  

<p>This presentation discusses a downstream application from Copernicus Services, developed in the framework of the IMPRESSIVE project, for the monitoring of  the oil spill produced after the crash of the ferry “Volcan de Tamasite” in waters of the Canary Islands on the 21<sup>st</sup> of April 2017. The presentation summarizes the findings of [1] that describe a complete monitoring of the diesel fuel spill, well-documented by port authorities. Complementary information supplied by different sources enhances the description of the event. We discuss the performance of very high resolution hydrodynamic models in the area of the Port of Gran Canaria and their ability for describing the evolution of this event. Dynamical systems ideas support the comparison of different models performance. Very high resolution remote sensing products and in situ observation validate the description.</p><p>Authors acknowledge support from IMPRESSIVE a project funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 821922. SW acknowledges the support of ONR Grant No. N00014-01-1-0769</p><p><strong>References</strong></p><p>[1] G.García-Sánchez, A. M. Mancho, A. G. Ramos, J. Coca, B. Pérez-Gómez, E. Álvarez-Fanjul, M. G. Sotillo, M. García-León, V. J. García-Garrido, S. Wiggins. Very High Resolution Tools for the Monitoring and Assessment of Environmental Hazards in Coastal Areas.  Front. Mar. Sci. (2021) doi: 10.3389/fmars.2020.605804.</p>


2004 ◽  
Vol 213 (1-4) ◽  
pp. 73-89 ◽  
Author(s):  
T. Marsset ◽  
B. Marsset ◽  
Y. Thomas ◽  
A. Cattaneo ◽  
E. Thereau ◽  
...  

1999 ◽  
Vol 158 (1-4) ◽  
pp. 89-109 ◽  
Author(s):  
T Marsset ◽  
B Tessier ◽  
J.-Y Reynaud ◽  
M De Batist ◽  
C Plagnol

2006 ◽  
Vol 23 (1) ◽  
pp. 107-120 ◽  
Author(s):  
Huai-Min Zhang ◽  
Richard W. Reynolds ◽  
Thomas M. Smith

Abstract A method is presented to evaluate the adequacy of the recent in situ network for climate sea surface temperature (SST) analyses using both in situ and satellite observations. Satellite observations provide superior spatiotemporal coverage, but with biases; in situ data are needed to correct the satellite biases. Recent NOAA/U.S. Navy operational Advanced Very High Resolution Radiometer (AVHRR) satellite SST biases were analyzed to extract typical bias patterns and scales. Occasional biases of 2°C were found during large volcano eruptions and near the end of the satellite instruments’ lifetime. Because future biases could not be predicted, the in situ network was designed to reduce the large biases that have occurred to a required accuracy. Simulations with different buoy density were used to examine their ability to correct the satellite biases and to define the residual bias as a potential satellite bias error (PSBE). The PSBE and buoy density (BD) relationship was found to be nearly exponential, resulting in an optimal BD range of 2–3 per 10° × 10° box for efficient PSBE reduction. A BD of two buoys per 10° × 10° box reduces a 2°C maximum bias to below 0.5°C and reduces a 1°C maximum bias to about 0.3°C. The present in situ SST observing system was evaluated to define an equivalent buoy density (EBD), allowing ships to be used along with buoys according to their random errors. Seasonally averaged monthly EBD maps were computed to determine where additional buoys are needed for future deployments. Additionally, a PSBE was computed from the present EBD to assess the in situ system’s adequacy to remove potential future satellite biases.


2018 ◽  
Vol 477 (1) ◽  
pp. 537-548 ◽  
Author(s):  
Benjamin Bellwald ◽  
Sverre Planke

AbstractHigh-resolution seismic data are powerful tools that can help the offshore industries to better understand the nature of the shallow subsurface and plan the development of vulnerable infrastructure. Submarine mass movements and shallow gas are among the most significant geohazards in petroleum prospecting areas. A variety of high-resolution geophysical datasets collected in the Barents Sea have significantly improved our knowledge of the shallow subsurface in recent decades. Here we use a c. 200 km2 high-resolution P-Cable 3D seismic cube from the Hoop area, SW Barents Sea, to study a 20–65 m thick glacial package between the seabed and the Upper Regional Unconformity (URU) horizons. Intra-glacial reflections, not visible in conventional seismic reflection data, are well imaged. These reflections have been mapped in detail to better understand the glacial deposits and to assess their impact on seabed installations. A shear margin moraine, mass transport deposits and thin soft beds are examples of distinct units only resolvable in the P-Cable 3D seismic data. The top of the shear margin moraine is characterized by a positive amplitude reflection incised by glacial ploughmarks. Sedimentary slide wedges and shear bands are characteristic sedimentary features of the moraine. A soft reflection locally draping the URU is interpreted as a coarser grained turbidite bed related to slope failure along the moraine. The bed is possibly filled with gas. Alternatively, this negative amplitude reflection represents a thin, soft bed above the URU. This study shows that P-Cable 3D data can be used successfully to identify and map the external and internal structures of ice stream shear margin moraines and that this knowledge is useful for site-survey investigations.


Author(s):  
Christian Marcussen ◽  
James A. Chalmers ◽  
Holger Lykke Andersen ◽  
Rasmus Rasmussen ◽  
Trine Dahl-Jensen

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Marcussen, C., Chalmers, J. A., Lykke Andersen, H., Rasmussen, R., & Dahl-Jensen, T. (2001). Acquisition of high-resolution multichannel seismic data in the offshore part of the Nuussuaq Basin, central West Greenland. Geology of Greenland Survey Bulletin, 189, 34-40. https://doi.org/10.34194/ggub.v189.5195 _______________ A high-resolution multichannel seismic survey (project NuussuaqSeis 2000) was carried out from 18 July to 2 August 2000 in the offshore part of the Nuussuaq Basin, central West Greenland using the Danish research vessel R/V Dana with seismic equipment from the Geological Institute, Aarhus University, Denmark. Funding for the project was provided by the Danish Energy Research Programme, the Bureau of Minerals and Petroleum, Nuuk, Greenland, the Geological Institute of Aarhus University and the Geological Survey of Denmark and Greenland (GEUS). After completion of the NuussuaqSeis 2000 project, R/V Dana was used for a three-day coring project in Disko Bugt (see Kuijpers et al. 2001, this volume) before the ship returned to Denmark.


2019 ◽  
Author(s):  
Janet M. Cowan

Karyotype analysis of cells has been in use for many years and has led to the causative genetic change in numerous clinical syndromes, including trisomy 21, Klinefelter, Turner, Prader-Willi and Angelman syndromes. The resolution of the test depends on the degree of condensation of the chromosomes in the karyotype, but even at high resolution (> 800 bands per haploid set) the changes identified are in the order of 5 Mb of DNA.  Fluorescence in situ hybridization (FISH) bridges the gap between the relatively low resolution of karyotype analysis and the very high resolution of DNA analysis. With FISH it is possible to identify smaller changes in individual cells. The size of the change identified correlates with the size of the probe, which vary from 120 kb to 600 kb in size. FISH is widely used to confirm deletions or duplications identified by newer methods, such as array analysis.   This review contains 8 figures, 3 tables, and 25 references. Keywords: Cytogenetics, chromosome, karyotype, chromosomal resolution, tissue culture, fluorescence, hybridization, probe


Sign in / Sign up

Export Citation Format

Share Document