multichannel seismic data
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 17)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yi-Ching Yeh ◽  
Jing-Yi Lin ◽  
Shu-Kun Hsu ◽  
Ching-Hui Tsai ◽  
Ching-Min Chang

AbstractThe West Philippine Basin (WPB) has started opening at ~ 58 Ma and ceased spreading at ~ 33 Ma, developing a fast spreading (~ 44 mm/yr half-spreading rate) magmatic episode between 58 and 41 Ma and the second amagmatic episode between 41 and 33 Ma. The occurrence of the first stage of spreading is closely related to the Oki-Daito mantle plume and related Benham Rise (BR) and Urdaneta Plateau (UP) activity. To the east of the Luzon–Okinawa Fracture Zone (LOFZ), BR was the most active volcanism from 48 to 41 Ma. The geomagnetic ages on both sides of the LOFZ have been determined; however, their causal relationship and evolution in the WPB remain unclear. In this study, we performed integrated analyses of multichannel seismic data and swath bathymetry data for the area to the west of the LOFZ. To the west of the LOFZ, the Gagua Rise (GR), is identified by a high residual free-air gravity anomaly, volcanic seamount chains and an overlapping spreading center. The GR is located at magnetic isochrons C20/C22 (50 to 44 Ma) and shows a thick oceanic crust of at least 12.7 km. We first propose an oceanic plateau named Great Benham Rise (GBR) which includes GR, UP and BR. We infer that the GR was a portion of the GBR since ~ 49 Ma and was separated from the GBR at ~ 41 Ma by the right-lateral LOFZ motion. Later, the relict GBR magmatism only continued in the area to the east of the LOFZ. Overall, the GBR dominates the spreading history of the WPB.


Author(s):  
Xinxiang Zhang ◽  
Stephen Arrowsmith ◽  
Sotirios Tsongas ◽  
Chris Hayward ◽  
Haoran Meng ◽  
...  

Abstract Ground motions associated with aircraft overflights can cover a significant portion of the seismic data collected by shallowly emplaced seismometers, such as new nodal and Distributed Acoustic Sensing systems. This article describes the first published framework for automated detection of aircraft on single channel and multichannel seismic data. The seismic data are converted to spectrograms in a sliding time window and classified as aircraft or nonaircraft in each window using a deep convolutional neural network trained with analyst-labeled data. A majority voting scheme is used to convert the output from the sequence of sliding time windows onto a decision time sequence for each channel and to combine the binary classifications on the decision time sequences across multiple channels. Precision, recall, and F-score are used to quantify the detection performance of the algorithm on nodal data using fourfold time-series cross validation. By applying our framework to data from the Sage Brush Flats nodal array in Southern California, we provide a benchmark performance and demonstrate the advantage of using an array of sensors.


2021 ◽  
Author(s):  
Banafsheh Najjarifarizhendi ◽  
Gabriele Uenzelmann-Neben

<p>High-resolution 2D multichannel seismic data collected by the Alfred Wegener Institute in 2019 across the Maurice Ewing Bank, the high-altitude easternmost section of the Falkland Plateau in the SW South Atlantic, are integrated with information from DSDP Leg 36, Sites 327, 329, and 330 and Leg 71 Site 511. A seismostratigraphic model is defined, including five units ranging in age from the Middle Jurassic to Quaternary and are interpreted with respect to the evolutional history of the oceanic circulations in the South Atlantic sector of the Southern Ocean. Sedimentary sequences of late Cretaceous and early Paleogene include little and restricted evidence of current activity, attributable to shallow-intermediate depth connections between the developing South Atlantic and Southern Ocean. In contrast, sedimentary sequences of the late Eocene/Oligocene and Neogene reveal a strong history of current-related erosion and deposition. These features exhibit specific water-depth expressions attesting to the long-term activity of different water masses, in stable circulation patterns as those of the present day. We thus suggest that proto-Upper and -Lower Circumpolar Deep Waters have been shaping the bank since the Oligocene. This implies that this bathymetric high has been acting as a barrier for the deep and bottom water masses flowing within the Antarctic Circumpolar Current since its establishment about the Eocene-Oligocene boundary.</p>


2020 ◽  
Author(s):  
Phil Cilli ◽  
Tony Watts ◽  
Brian Boston ◽  
Donna Shillington

<p>The oceanic crust in the vicinity of the Hawaiian Islands is of tectonic interest because it formed at a fast spreading mid-oceanic ridge during the Late Cretaceous (Turonian) and has been deformed since the Late Miocene by volcanic loads generated at a deep mantle hotspot. We have used legacy and recently acquired multichannel seismic reflection data to determine the character of oceanic crust and the Moho in a region south of the Hawaiian Islands where the Pacific plate has been flexed upwards partly by volcano loading and partly by the dynamics of the hotspot. The legacy data is based on Common Depth Point (CDP) and Constant Offset Profile (COP) data acquired onboard R/V <em>Robert D. Conrad</em> and R/V <em>Kana Keoki</em> during August/September 1982. <em>Conrad</em> was equipped with a 3.6 km long streamer and a 1864 cu. in. airgun array and <em>Kana Keoki</em> was equipped with a 1864 cu. in. array. During the COP experiment the two ships steamed on a similar heading and a separation distance of 3.6 km, yielding an effective offset for reflection data of 7.2 km. Original field data have been re-processed with ‘state-of-the-art’ seismic processing work flows using Shearwater REVEAL software. The recently acquired data was acquired during October 2018 with R/V <em>Marcus G. Langseth</em>, equipped with a 15 km long streamer and a 6600 cu. in. airgun array. Comparisons between the legacy and recently acquired reflection data have been informative, revealing new methods to process <em>Conrad’s</em> legacy of multichannel data acquired on 31 cruises during 1975 to 1989 and new insights on the structure and nature of the Moho in 95 Ma oceanic crust.</p>


2020 ◽  
Author(s):  
Yaocen Pan ◽  
Elisabeth Seidel ◽  
Christian Hübscher ◽  
Christopher Juhlin ◽  
Daniel Sopher

<p>The Hanö Bay basin was formed during Late Cretaceous transgression as a sedimentary trough on the NE margin of the Sorgenfrei-Tornquist Zone (STZ), a narrow NW-SE striking intraplate inversion zone within the Fennoscandian Border Zone. Sedimentation within the basin was primarily controlled by inversion tectonics, resulting in a coarse-grained syn-inversion clastic wedge forming adjacent to the basin-bounding fault in the Santonian-Maastrichtian. Previous studies have highlighted the deposition of contourite sediments associated with topographic relief of the chalk sea created by such local inversion-induced uplift. Imaged upper Cretaceous clinforms in the marginal trough show a NE-ward progadational character, that is, away from the uplifted and eroded inversion zone. These extend along the inversion axis all the way to NE of the Mid-Polish trough.</p><p>To gain detailed stratigraphic constraints and to better understand the interaction of these syn-sedimentary features that developed during inversion tectonics, we use a combination of high-resolution multichannel seismic data (MCS) from the 2019 AL526 cruise and a number of key profiles from reprocessed 70-80’s legacy industry MCS. Preliminary results suggest a drift-moat system developed during a stepwise uplift of the SW shoulder of the STZ, with the uplift driven by transpressional reactivation of basement faults. The resultant aggradational wedge formed a shelf-margin extending fairly far into the basin. The overlying clinoform depositional successions clearly demonstrate several depositional stages; including highstand-progradation, highstand-aggradation and distinct transgression-retrogradation, during which an overall landward migration of the paleo-shoreline position is revealed. The results constrain relative sea-level changes in this area that were primarily related to tectonic events during the Santonian-Campanian.</p>


2020 ◽  
Author(s):  
Shray Badhani ◽  
Antonio Cattaneo ◽  
Florent Colin ◽  
Bruno Marsset ◽  
Roger Urgeles ◽  
...  

<p><span>The Gulf of Lions (GoL) is a passive margin of about 200 km long and 70 km wide with main sediment supply from the Rhone River supplying Alpine sediments to the Rhone delta. Submarine landslides in the GoL are widespread from the upper slope to the deep basin, within the canyon flanks and in the interfluves of major canyons. The two main submarine landslides present in the GoL are the Eastern Rhône Interfluve Slide (ERIS) and an unnamed slide complex on the western side of the Petit Rhone Canyon. Their resulting mass transport deposits (MTDs), the Rhone Eastern MTD (REMTD) and the Rhone Western MTD (RWMTD) have previously been described in detail in several studies. However, due to the lack of high-resolution multidisciplinary datasets, such as high-resolution seismic, sediment cores, and </span><em><span>in-situ </span></em><span>geotechnical measurements, a detailed analysis of weak layers and preconditioning factors was never performed. Here, we present a suite of a multidisciplinary dataset; particularly very high-resolution deep-towed multichannel seismic data acquired using Ifremer’s in-house acquisition system SYSIF (SYstème SIsmique de Fond) to assess seafloor instabilities in the GoL. The objectives of this study are twofold and aimed at 1) using deep-towed multichannel seismic data to capture the internal structure of the mass-wasting products previously imaged as seismically transparent or chaotic intervals in conventional seismic data; 2) using multidisciplinary dataset to analyse the basal surfaces of slope failures in the GoL. For the first time, the newly-acquired SYSIF data show in unprecedented detail the internal structure of mass-transport deposit along with small-scale slope failures. We present here an example of a failure that consists of slide blocks, folded and faulted strata with remnant stratigraphy previously associated with a transparent or chaotic facies in the conventional reflection seismic data. The combination of deep-towed seismic and sedimentological data, as well as </span><em><span>in-situ </span></em><span>measurements allowed us to analyse and characterize the nature of the basal surface of the slope failures in greater detail. We show that the basal surfaces of the recurring slope failures mainly consist of fine-grained clay-rich sediments as compared to turbiditic sequences typical of Rhone turbiditic system. Such observations suggest that greater degree of lithological heterogeneity in sedimentary strata promotes slope failure in the GoL, most likely related to higher liquefaction potential of coarser-grained material, excess pore pressure and possibly resulting variation in sediment strength.</span></p>


Sign in / Sign up

Export Citation Format

Share Document