Characteristics of a HSS-driven magnetic storm in the high-latitude ionosphere; A case study of 14th of March 2016 storm

Author(s):  
Nada Ellahouny ◽  
Anita Aikio ◽  
Marcus Pedersen ◽  
Heikki Vanhamäki ◽  
Ilkka Virtanen ◽  
...  

<p> Solar wind High-Speed Streams (HSSs) affect the auroral ionosphere in many ways, and several separate studies have been conducted of the different effects seen e.g. on aurora, geomagnetic disturbances, F-region behavior, and energetic particle precipitation. In this work, we study an HSS event in the solar cycle (24), which was associated with a co-rotating interaction region (CIR) that hit the Earth’s magnetopause at about 17:20 UT on 14 March 2016. The associated magnetic storm lasted for seven days, and the Dst index reached -56 nT. We use a very comprehensive set of measurements to study the whole period of this storm, following day by day for the magnetic indices and solar wind parameters and relating its consequences on ionospheric plasma parameters. We use EISCAT radar data from Tromsø and Svalbard stations to see the response in plasma parameters at different altitudes, riometer data for cosmic noise absorption, and IMAGE magnetometers to see the intensities of auroral electrojets. TomoScand ionospheric tomography provides us with electron densities over a wide region in Scandinavia and AMPERE data the global field-aligned currents. We identified 13 local substorms in the Scandinavian sector from the IL (IMAGE lower) index. Altogether, there were 11 global substorms, for which the AE index reaches 1000 nT. We discuss the development of currents, as well as E and D region precipitation during the course of this long-duration storm and compare local versus global behavior.</p>

2008 ◽  
Vol 45 (2) ◽  
pp. 61-66
Author(s):  
Rekha Agarwal ◽  
Rajesh Mishra ◽  
Sharad Tiwari

Cosmic Ray Nucleonic Intensity in Low-Amplitude Days During the Passage of High-Speed Solar Wind StreamsOne of the most striking features of solar wind is its organization into high- and low- speed streams. It is now well established that the passage over the Earth of high-speed solar wind streams leads to geomagnetic disturbances. The high-speed plasma streams are thus a key element in the complex chain of events that link geomagnetic activity to the solar activity and are therefore of great interest to the solar terrestrial physics. Two types of high-speed solar wind streams - coronal-hole-associated (or corotating) and flare-generated - were studied based on magnetic field and solar wind plasma parameters. In the work, the dependence was obtained for cosmic ray (CR) depressions due to high-speed solar wind streams during low-amplitude days. The CR nucleonic intensity data were subjected to the superposed epoch analysis with respect to the start time of high-speed solar wind streams. It was found that streams of both types produce significant deviations in the CR intensity during low-amplitude anisotropic wave train events. At the onset of such streams the CR intensity reaches its minimum during low-amplitude events and then increases statistically.


2009 ◽  
Vol 5 (S264) ◽  
pp. 359-362 ◽  
Author(s):  
G. Maris ◽  
O. Maris

AbstractSolar activity and its consequences for the interplanetary space are governing and perturbing the Earth's magnetosphere. The response of the terrestrial magnetosphere displayed as geomagnetic disturbances is measured by several geomagnetic indices. This paper analyses the geomagnetic variability during the ascendant phases of the last four solar cycles (nos. 20-23) under the influence of the high speed solar wind. The ascendant phase of a solar cycle is a proper interval of the irrespective cycle during which the influences of the solar cycles adjacent to it (the precedent and the following ones) are not present. The correlation between the geomagnetic indices and the high speed stream intensity during the analysed intervals was examined. Lomb-Scargle method of spectral analysis was applied on the solar wind velocity series during the ascendant phases.


2015 ◽  
Vol 120 (12) ◽  
pp. 10,669-10,687 ◽  
Author(s):  
M. Grandin ◽  
A. T. Aikio ◽  
A. Kozlovsky ◽  
T. Ulich ◽  
T. Raita

2021 ◽  
Author(s):  
Anastasiia Moskaleva ◽  
Maria Riazantseva ◽  
Yuri Yermolaev ◽  
Irina Lodkina

<p>The efficiency of the solar wind interaction with the Earth's magnetosphere is determined not only by the values of solar wind parameters, but also by the direction of its flow.  As a rule, the slow quiet and uniform solar wind extends radially, but at the same time there are different large-scale solar wind streams, that differ in the values of the plasma parameters and in the flow direction. The most significant changes of solar wind flow direction can be observed in areas of stream interaction, for example Sheath (compression regions before the fast interplanetary coronal mass ejections) and CIR (corotating interaction regions, that are predate high-speed flows from coronal holes) [1]. In the present study, using plasma measurements on the WIND spacecraft, the statistical distributions of the values and fluctuations of flow direction angles in the solar wind were analyzed.  The angles variations were considered on temporal scales from several ten seconds to an hour. The statistical distributions in the quiet solar wind and in various large-scale solar wind streams using the catalog of large-scale solar wind phenomena from the ftp://ftp.iki.rssi.ru/pub/omni/catalog were compared [2].</p><p>At the result of this work, it was shown , that maximum values of modules longitude (φ) and latitude (θ) angles, and of their variations are observed for Sheath and CIR regions, the probability of large deviations from the radial direction (>5 degrees)  also increases. Meanwhile the dependence on the solar wind type reduces with decreasing scale. The relation of the values and fluctuations of the direction angles on the values of the plasma parameters in the solar wind were also analyzed.<br><br>The work was supported by the RFBR, grant № 19-02-00177а.</p><p>1.Yermolaev Y. I., Lodkina I. G., Nikolaeva N. S., Yermolaev M. Y. 2017, Solar Physics, <strong>292 (12),</strong>193, https://doi.org/10.1007/s11207-017-1205-1<br>2. Yermolaev, Yu.I., Nikolaeva, N.S., Lodkina, I.G., Yermolaev, M.Yu.: 2009, Catalog of large-scale solar wind phenomena during 1976 – 2000. Cosm. Res. <strong>47</strong>(2),81;Eng.transl.Kosm.Issled.<strong>47</strong>(2),99, https://doi.org/10.1134/S0010952509020014</p>


2007 ◽  
Vol 25 (8) ◽  
pp. 1837-1849 ◽  
Author(s):  
J. K. Hargreaves ◽  
M. J. Birch ◽  
B. J. I. Bromage

Abstract. The effects of energetic electron precipitation into the auroral region at a time of enhanced solar wind have been investigated during a continuous period of 24 h, using the European Incoherent Scatter (EISCAT) radar, an imaging riometer, and particle measurements on an orbiting satellite. The relative effects in the E region (120 km) and D region (90 km) are found to vary during the day, consistent with a gradual hardening of the incoming electron spectrum from pre-midnight to morning. Whereas the night spectra are single peaked, the daytime spectra are found to be double peaked, suggesting the presence of two distinct populations. A comparison between the radiowave absorption observed with the riometer and values estimated from the radar data shows generally good agreement, but with some discrepancies suggesting the occurrence of some small-scale features. The height and thickness of the absorbing region are estimated. Two periods of enhanced precipitation and the related radio absorption, one near magnetic midnight and one in the early morning, are studied in detail, including their horizontal structure and movement of the absorption patches. A sharp reduction of electron flux recorded on a POES satellite is related to the edge of an absorption region delineated by the imaging riometer. The observed particle flux is compared with a value deduced from the radar data during the overpass, and found to be in general agreement.


2017 ◽  
Vol 122 (5) ◽  
pp. 5203-5223 ◽  
Author(s):  
M. Grandin ◽  
A. T. Aikio ◽  
A. Kozlovsky ◽  
T. Ulich ◽  
T. Raita

2017 ◽  
Vol 13 (S335) ◽  
pp. 272-275
Author(s):  
Mitsue Den ◽  
Takashi Tanaka ◽  
Yuki Kubo ◽  
Shinichi Watari

AbstractEmanating from coronals holes (CHs), high speed streams (HSSs) cause recurrent geomagnetic disturbances in the Earth’s magnetosphere. For this reason being able to predict the occurrence and timing of the high speed solar wind is one of the more important issues in space weather forecasting. Currently, it is still difficult to estimate the effect of a CH in case that it extends from high latitudes to lower ones. To monitor the global solar wind condition we have therefore developed a three-dimensional MHD simulation code, the REProduce Plasma Universe (REPPU) code, that is driven by the solar magnetic field from the solar surface to 1AU. The connectivity of magnetic field lines from CHs to Earth’s orbit via HSSs has been investigated. Simulation results are presented and the usefulness of our model is discussed.


2020 ◽  
Author(s):  
Anmin Tian ◽  
Alexander Degeling ◽  
Quanqi Shi ◽  
Zanyang Xing

<p>Both simulations and observations had shown that step function-like increase/decrease of solar wind dynamic pressure pulse would excite flow vortex pairs in the dawn and dusk high latitude ionosphere simultaneously. However, some plasma structures, hot flow anomaly, sheath jets etc. existing in the solar wind or magnetosheath are often accompanied with spike-like changes of the dynamic pressure. Whether they can drive the ionospheric vortices or not is still unclear. In this work we report a traveling convection vortex like (TCV-like) event that was induced by a positive-negative pulse pair of dynamic pressure(△p/p~1) accompanying a large scale (~9min) magnetic hole in the solar wind. It is found that following the magnetic hole, two traveling convection vortices first in anticlockwise then in clockwise rotation were detected by geomagnetic stations located along the 10:30MLT meridian. Meanwhile, another pair of ionospheric vortices azimuthally seen up to 3 MLT first in clockwise then in anticlockwise rotation were appeared in the afternoon sector (~14MLT) centered at ~75MLAT with a trend of poleward moving. The duskside vortices were also confirmed by SuperDARN radar data. The processes following magnetosphere struck by a positive-negative pulse pair were simulated and it found that two pairs of flow vortices in the dawn and dusk magnetosphere may provide the field-aligned currents(FACs) required for the flow/current vortices observed in ionosphere. This work provides a way to understand how the momentum and energy injects to the ionosphere under spike-like dynamic pressures imposing on the magnetosphere.</p>


Sign in / Sign up

Export Citation Format

Share Document