Effect of auroral electrojets and solar wind parameters on variations in the intensity of low-latitude geomagnetic disturbances and Dst during the extremely large magnetic storm of November 20–21, 2003

2008 ◽  
Vol 48 (3) ◽  
pp. 293-306 ◽  
Author(s):  
S. I. Solovyev ◽  
R. N. Boroyev ◽  
A. V. Moiseyev ◽  
A. Du ◽  
K. Yumoto
Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 390
Author(s):  
Pouya Manshour ◽  
Georgios Balasis ◽  
Giuseppe Consolini ◽  
Constantinos Papadimitriou ◽  
Milan Paluš

An information-theoretic approach for detecting causality and information transfer is used to identify interactions of solar activity and interplanetary medium conditions with the Earth’s magnetosphere–ionosphere systems. A causal information transfer from the solar wind parameters to geomagnetic indices is detected. The vertical component of the interplanetary magnetic field (Bz) influences the auroral electrojet (AE) index with an information transfer delay of 10 min and the geomagnetic disturbances at mid-latitudes measured by the symmetric field in the H component (SYM-H) index with a delay of about 30 min. Using a properly conditioned causality measure, no causal link between AE and SYM-H, or between magnetospheric substorms and magnetic storms can be detected. The observed causal relations can be described as linear time-delayed information transfer.


2008 ◽  
Vol 4 (S257) ◽  
pp. 451-456
Author(s):  
E. Eroshenko ◽  
A. Belov ◽  
H. Mavromichalaki ◽  
V. Oleneva ◽  
A. Papaioannou ◽  
...  

AbstractThe Forbush effects associated with far western and eastern powerful sources on the Sun that occurred on the background of unsettled and moderate interplanetary and geomagnetic disturbances have been studied by data from neutron monitor networks and relevant measurements of the solar wind parameters. These Forbush effects may be referred to a special sub-class of events, with the characteristics like the event in July 2005, and incorporated by the common conditions: absence of a significant disturbance in the Earth vicinity; absence of a strong geomagnetic storm; slow decrease of cosmic ray intensity during the main phase of the Forbush effect. General features and separate properties in behavior of density and anisotropy of 10 GV cosmic rays for this subclass are investigated.


2021 ◽  
Vol 880 (1) ◽  
pp. 012010
Author(s):  
S N A Syed Zafar ◽  
Roslan Umar ◽  
N H Sabri ◽  
M H Jusoh ◽  
A Yoshikawa ◽  
...  

Abstract Short-term earthquake forecasting is impossible due to the seismometer’s limited sensitivity in detecting the generation of micro-fractures prior to an earthquake. Therefore, there is a strong desire for a non-seismological approach, and one of the most established methods is geomagnetic disturbance observation. Previous research shows that disturbances in the ground geomagnetic field serves as a potential precursor for earthquake studies. It was discovered that electromagnetic waves (EM) in the Ultra-Low Frequency (ULF) range are a promising tool for studying the seismomagnetic effect of earthquake precursors. This study used a multiple regression approach to analyse the preliminary study on the relationship between Pc4 (6.7-22 mHz) and Pc5 (1.7-6.7 mHz) ULF magnetic pulsations, solar wind parameters and geomagnetic indices for predicting earthquake precursor signatures in low latitude regions. The ground geomagnetic field was collected from Davao station (7.00° N, 125.40° E), in the Philippines, which experiences nearby earthquake events (Magnitude <5.0, depth <100 km and epicentre distance from magnetometer station <100 km). The Pc5 ULF waves show the highest variance with four solar wind parameters, namely SWS, SWP, IMF-Bz, SIE and geomagnetic indices (SYM/H) prior to an earthquake event based on the regression model value of R2 = 0.1510. Furthermore, the IMF-Bz, SWS, SWP, SWE, and SYM/H were found to be significantly correlated with Pc5 ULF geomagnetic pulsation. This Pc5 ULF magnetic pulsation behaviour in solar winds and geomagnetic storms establishes the possibility of using Pc5 to predict earthquakes.


Radio Science ◽  
2020 ◽  
Vol 55 (11) ◽  
Author(s):  
Roshan Kumar Mishra ◽  
Binod Adhikari ◽  
Narayan Prasad Chapagain ◽  
Rabin Baral ◽  
Priyanka Kumari Das ◽  
...  

2007 ◽  
Vol 25 (1) ◽  
pp. 191-205 ◽  
Author(s):  
C. J. Farrugia ◽  
A. Grocott ◽  
P. E. Sandholt ◽  
S. W. H. Cowley ◽  
Y. Miyoshi ◽  
...  

Abstract. The Earth's magnetosphere was very strongly disturbed during the passage of the strong shock and the following interacting ejecta on 21–25 October 2001. These disturbances included two intense storms (Dst*≈−250 and −180 nT, respectively). The cessation of this activity at the start of 24 October ushered in a peculiar state of the magnetosphere which lasted for about 28 h and which we discuss in this paper. The interplanetary field was dominated by the sunward component [B=(4.29±0.77, −0.30±0.71, 0.49±0.45) nT]. We analyze global indicators of geomagnetic disturbances, polar cap precipitation, ground magnetometer records, and ionospheric convection as obtained from SuperDARN radars. The state of the magnetosphere is characterized by the following features: (i) generally weak and patchy (in time) low-latitude dayside reconnection or reconnection poleward of the cusps; (ii) absence of substorms; (iii) a monotonic recovery from the previous storm activity (Dst corrected for magnetopause currents decreasing from ~−65 to ~−35 nT), giving an unforced decreased of ~1.1 nT/h; (iv) the probable absence of viscous-type interaction originating from the Kelvin-Helmholtz (KH) instability; (v) a cross-polar cap potential of just 20–30 kV; (vi) a persistent, polar cap region containing (vii) very weak, and sometimes absent, electron precipitation and no systematic inter-hemisphere asymmetry. Whereas we therefore infer the presence of a moderate amount of open flux, the convection is generally weak and patchy, which we ascribe to the lack of solar wind driver. This magnetospheric state approaches that predicted by Cowley and Lockwood (1992) but has never yet been observed.


2019 ◽  
Vol 6 (2) ◽  
pp. 276-293
Author(s):  
Prashant Poudel ◽  
Sunil Simkhada ◽  
Binod Adhikari ◽  
Deepak Sharma ◽  
Jeevan Jyoti Nakarmi

2020 ◽  
Author(s):  
Nada Ellahouny ◽  
Anita Aikio ◽  
Marcus Pedersen ◽  
Heikki Vanhamäki ◽  
Ilkka Virtanen ◽  
...  

&lt;p&gt;&amp;#160;Solar wind High-Speed Streams (HSSs) affect the auroral ionosphere in many ways, and several separate studies have been conducted of the different effects seen e.g. on aurora, geomagnetic disturbances, F-region behavior, and energetic particle precipitation. In this work, we study an HSS event in the solar cycle (24), which was associated with a co-rotating interaction region (CIR) that hit the Earth&amp;#8217;s magnetopause at about 17:20 UT on 14 March 2016. The associated magnetic storm lasted for seven days, and the Dst index reached -56 nT. We use a very comprehensive set of measurements to study the whole period of this storm, following day by day for the magnetic indices and solar wind parameters and relating its consequences on ionospheric plasma parameters. We use EISCAT radar data from Troms&amp;#248; and Svalbard stations to see the response in plasma parameters at different altitudes, riometer data for cosmic noise absorption, and IMAGE magnetometers to see the intensities of auroral electrojets. TomoScand ionospheric tomography provides us with electron densities over a wide region in Scandinavia and AMPERE data the global field-aligned currents. We identified 13 local substorms in the Scandinavian sector from the IL (IMAGE lower) index. Altogether, there were 11 global substorms, for which the AE index reaches 1000 nT. We discuss the development of currents, as well as E and D region precipitation during the course of this long-duration storm and compare local versus global behavior.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document