From remote sensing to bioeconomy: how big data can improve automatic map generation

Author(s):  
Jonathan Rizzi ◽  
Ingvild Nystuen ◽  
Misganu Debella-Gilo ◽  
Nils Egil Søvde

<p>Recent years are experiencing an exponential increase of remote sensing datasets coming from different sources (satellites, airplanes, UAVs) at different resolutions (up to few cm) based on different sensors (single bands sensors, hyperspectral cameras, LIDAR, …). At the same time, IT developments are allowing for the storage of very large datasets (up to Petabytes) and their efficient processing (through HPC, distributed computing, use of GPUs). This allowed for the development and diffusion of many libraries and packages implementing machine learning algorithm in a very efficient way. It has become therefor possible to use machine learning (including deep learning methods such as convolutional neural networks) to spatial datasets with the aim of increase the level of automaticity of the creation of new maps or the update of existing maps. </p><p>Within this context, the Norwegian Institute of Bioeconomy Research (NIBIO), has started a project to test and apply big data methods and tools to support research activity transversally across its divisions.  NIBIO is a research-based knowledge institution that utilizes its expertise and professional breadth for the development of the bioeconomy in Norway. Its social mission entails a national responsibility in the bioeconomy sector, focusing on several societal challenges including: i) Climate (emission reductions, carbon uptake and climate adaptation); ii) Sustainability (environment, resource management and production within nature and society's tolerance limits); iii) Transformation (circular economy, resource efficient production systems, innovation and technology development); iv) food; and v) economy.</p><p>The presentation will show obtained results focus on land cover mapping using different methods and different dataset, include satellite images and airborne hyperspectral images. Further, the presentation will focus related on the criticalities related to automatic mapping from remote sensing dataset and importance of the availability of large training datasets.</p>


A large volume of datasets is available in various fields that are stored to be somewhere which is called big data. Big Data healthcare has clinical data set of every patient records in huge amount and they are maintained by Electronic Health Records (EHR). More than 80 % of clinical data is the unstructured format and reposit in hundreds of forms. The challenges and demand for data storage, analysis is to handling large datasets in terms of efficiency and scalability. Hadoop Map reduces framework uses big data to store and operate any kinds of data speedily. It is not solely meant for storage system however conjointly a platform for information storage moreover as processing. It is scalable and fault-tolerant to the systems. Also, the prediction of the data sets is handled by machine learning algorithm. This work focuses on the Extreme Machine Learning algorithm (ELM) that can utilize the optimized way of finding a solution to find disease risk prediction by combining ELM with Cuckoo Search optimization-based Support Vector Machine (CS-SVM). The proposed work also considers the scalability and accuracy of big data models, thus the proposed algorithm greatly achieves the computing work and got good results in performance of both veracity and efficiency.



2020 ◽  
pp. practneurol-2020-002688
Author(s):  
Stephen D Auger ◽  
Benjamin M Jacobs ◽  
Ruth Dobson ◽  
Charles R Marshall ◽  
Alastair J Noyce

Modern clinical practice requires the integration and interpretation of ever-expanding volumes of clinical data. There is, therefore, an imperative to develop efficient ways to process and understand these large amounts of data. Neurologists work to understand the function of biological neural networks, but artificial neural networks and other forms of machine learning algorithm are likely to be increasingly encountered in clinical practice. As their use increases, clinicians will need to understand the basic principles and common types of algorithm. We aim to provide a coherent introduction to this jargon-heavy subject and equip neurologists with the tools to understand, critically appraise and apply insights from this burgeoning field.



2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Babacar Gaye ◽  
Dezheng Zhang ◽  
Aziguli Wulamu

With the rapid development of the Internet and the rapid development of big data analysis technology, data mining has played a positive role in promoting industry and academia. Classification is an important problem in data mining. This paper explores the background and theory of support vector machines (SVM) in data mining classification algorithms and analyzes and summarizes the research status of various improved methods of SVM. According to the scale and characteristics of the data, different solution spaces are selected, and the solution of the dual problem is transformed into the classification surface of the original space to improve the algorithm speed. Research Process. Incorporating fuzzy membership into multicore learning, it is found that the time complexity of the original problem is determined by the dimension, and the time complexity of the dual problem is determined by the quantity, and the dimension and quantity constitute the scale of the data, so it can be based on the scale of the data Features Choose different solution spaces. The algorithm speed can be improved by transforming the solution of the dual problem into the classification surface of the original space. Conclusion. By improving the calculation rate of traditional machine learning algorithms, it is concluded that the accuracy of the fitting prediction between the predicted data and the actual value is as high as 98%, which can make the traditional machine learning algorithm meet the requirements of the big data era. It can be widely used in the context of big data.



Now days, Machine learning is considered as the key technique in the field of technologies, such as, Internet of things (IOT), Cloud computing, Big data and Artificial Intelligence etc. As technology enhances, lots of incorrect and redundant data are collected from these fields. To make use of these data for a meaningful purpose, we have to apply mining or classification technique in the real world. In this paper, we have proposed two nobel approaches towards data classification by using supervised learning algorithm





Sign in / Sign up

Export Citation Format

Share Document