3D Crustal P-Wave Velocity Structure for the Ordos block and Its Adjacent Area based on travel time tomography

Author(s):  
Yaning Liu ◽  
Jianping Wu

<p>The Ordos block is located on the west side of the North China Carton, adjacent to the northeastern part of the Tibetan Plateau. Affected by two tectonic movements, Ordos block internal structure remains relatively stable structure, but surrounded by active tectonic belts. With the development of the second and third part of the “China Seismological Science Array”, the distribution of seismic observation stations in Ordos region has been greatly improved. This study will use the new seismic observation data of "Array III", and combined with the phase observation data of "Array II" to form a more complete seismic phase travel time data set. The regional seismic body-wave travel time tomography will figure out a more reliable three-dimensional velocity structure of P waves in Ordos.</p><p>Our study area spans from 32°N to 42°N and 108°E to 114°E , which includes the Ordos block and its adjacent structures . The seismic data we used for inversion were recorded by 1244 stations including: 198 permanent stations and 1043 temporary stations (ChinArray II and III), from November 2013 to August 2017. After manual labeled the seismic phase, we select events with more than ten phase records of individual seismic events. The epicentral distance is less than 200km. Finally, we obtained about 22,500 phase records of 1882 local seismic events.</p><p>The preliminary results are consistent with previous studies and surface structures of a wide range of velocity distributions. However, in the middle-upper crust under the Liupan Mountain west, the low-speed anomaly extending downward is shown, which may be caused by the shallow crustal damage caused with the continuous eastward compression of asthenosphere in the northeastern margin of the Qinghai-Tibet Plateau during the Cenozoic. It is worth noting that there is an EW-trending low-velocity zone under the Dingbian-Suide fault beneath the Ordos Basin, with a depth form lower crust to 50 km in upper mantel. This low-velocity anomaly divides the high-speed disturbance in the Ordos block into two parts,indicate the depth of the fault can reach the upper mantel. In the Taihang Mountains in the west of the study area, low-velocity anomalies extending to the upper layer of the mantle are shown. We initially believe that this anomaly is related to the volcanic thermal motion that once existed on the area.</p>

2018 ◽  
Vol 90 (1) ◽  
pp. 229-241 ◽  
Author(s):  
Hailiang Xin ◽  
Haijiang Zhang ◽  
Min Kang ◽  
Rizheng He ◽  
Lei Gao ◽  
...  

2006 ◽  
Vol 7 (7) ◽  
pp. n/a-n/a ◽  
Author(s):  
Timothy Watson ◽  
Andrew Nyblade ◽  
Douglas A. Wiens ◽  
Sridhar Anandakrishnan ◽  
Margaret Benoit ◽  
...  

2020 ◽  
Author(s):  
Biao Yang ◽  
Yanbin Wang

<p>Qaidam Basin, located in the northern margin of the Tibet Plateau, is the junction of several tectonic blocks. The blocks’ extrusion resulted in large faults and strong historical earthquakes. Previous studies have shown that the crustal structures of the eastern and the western Qaidam Basin are obviously different. In this study, the seismic reflection and refraction phases from Conrad and Moho discontinuity in Qaidam Basin are distinguished by waveform simulation and travel time fitting of 3 regional earthquakes on 32 stations. The results of travel time fitting and waveform simulation show that the first arrivals in the epicenter range of 90km ~ 260km are the P* phases from the Conrad discontinuity. The depth of Conrad discontinuity under the eastern basin is about 4 km shallower than that in the western basin, which can be attributed to different crust thickening models between the eastern and western basin. In addition, the focal depths of regional earthquakes occurred within recent 5 years in Qaidam region also shows the difference of the Conrad discontinuity. The Conrad discontinuity is considered to be the lower boundary of the low velocity layer in the upper crust. The upper crust thickening in the western basin led to the sinking of the layer, while the multiple thrusts resulted in the rise of the lower crust in the east. The two different effects could interpret the depth change of the Conrad discontinuity in the basin from the west to the east. </p>


2020 ◽  
Author(s):  
Kajetan Chrapkiewicz ◽  
Michele Paulatto ◽  
Joanna Morgan ◽  
Mike Warner ◽  
Benjamin Heath ◽  
...  

<p>Detailed knowledge about geometry and physical properties of magmatic systems at arc volcanoes promises to better constrain models of magma differentiation, transit and storage in the crust, and to help assess volcanic hazard.</p><p>Unfortunately, low-velocity zones associated with melt accumulation are particularly difficult to image by conventional travel-time tomography due to its limited resolving power, resulting in blurred boundaries and underestimated velocity contrasts.</p><p>Here we alleviate these issues by applying full-waveform inversion (FWI) to study a magmatic system of Santorini - an active, semi-submerged volcano with a known record of large, caldera-forming eruptions.</p><p>We use a 3D wide-angle, multi-azimuth seismic dataset from the recent PROTEUS experiment acquired with ca. 150 ocean-bottom/land seismic stations and ca. 14,000 air-gun shots. We implement a finite-difference immersed boundary method to simulate reflections off the caldera’s irregular topography, and pressure-velocity conversion to take full advantage of the multi-component data. We perform inversion with careful data-selection, increasing frequency up to 6 Hz, and extensive quality-control based on a phase spatial-continuity criterion.</p><p>A final P-wave velocity model of the upper crust offers a high-resolution image of Santorini magmatic and hydrothermal systems with pronounced low-velocity zones due to a high melt and water content respectively. The features are better resolved and the velocity contrasts distinctly sharper than in the starting model obtained with travel-time tomography. We also recover a previously undetected low velocity anomaly of >40% beneath Kolumbo - a submarine volcanic cone to the NE of Santorini caldera. We interpret this anomaly as a magmatic sill.</p>


Sign in / Sign up

Export Citation Format

Share Document