A regional assessment of land-based carbon mitigation options: Bioenergy, reforestation, forest management

Author(s):  
Mona Reiss ◽  
Andy Krause ◽  
Anja Rammig

<p>Current scenarios assume that in addition to a rapid reduction in greenhouse gas emissions, land-based carbon mitigation will also be necessary to achieve the targets of the Paris Climate Agreement. Possible measures are increased carbon sequestration via planting new forests, the cultivation of bioenergy crops, possibly in combination with carbon capture and storage (BECCS), or increasing the carbon storage of existing forests. However, currently available scenarios that are in line with IPCC storylines (SSPs, Shared Socioeconomic Pathways and RCPs, Representative Concentration Pathways) usually have  a global  perspective, while in practice mitigation projects have to be realized regionally or locally. Here, we investigate the carbon mitigation potential via alternative management of Bavarian ecosystems using an ecosystem model with an explicit representation of climate impacts and land management. Bioenergy cultivation on existing agricultural land has a larger mitigation potential than reforestation only if combined with carbon capture and storage (BECCS).  The mitigation potential in the forestry sector via alternative management is limited (converting coniferous into mixed forests, nitrogen fertilization) or even negative (suspending wood harvest) due to decreased carbon storage in product pools and associated substitution effects. Overall, the potential for land-based mitigation in Bavaria is limited because the majority of current agricultural lands will still be needed for food production and the forestry sector offers only small per-area carbon mitigation potentials.</p>

2020 ◽  
Vol 10 (11) ◽  
pp. 1023-1029 ◽  
Author(s):  
S. V. Hanssen ◽  
V. Daioglou ◽  
Z. J. N. Steinmann ◽  
J. C. Doelman ◽  
D. P. Van Vuuren ◽  
...  

Lab on a Chip ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 3942-3951
Author(s):  
Tsai-Hsing Martin Ho ◽  
Junyi Yang ◽  
Peichun Amy Tsai

Carbon capture and storage in deep saline aquifers is a promising technology to mitigate anthropologically emitted CO2. Our high-pressure microfluidics can help assess the relevant time-scale and CO2 mass transfer in different reservoir conditions.


2021 ◽  
Vol 27 (6) ◽  
Author(s):  
Kian Mintz-Woo ◽  
Joe Lane

AbstractThis paper puts forward two claims about funding carbon capture and storage. The first claim is that there are moral justifications supporting strategic investment into CO2 storage from global and regional perspectives. One argument draws on the empirical evidence which suggests carbon capture and storage would play a significant role in a portfolio of global solutions to climate change; the other draws on Rawls’ notion of legitimate expectations and Moellendorf’s Anti-Poverty principle. The second claim is that where to pursue this strategic investment poses a morally non-trivial problem, with considerations like near-term global distributive justice and undermining legitimate expectations favouring investing in developing regions, especially in Asia, and considerations like long-term climate impacts and best uses of resources favouring investing in the relatively wealthy regions that have the best prospects for successful storage development.


Author(s):  
Christian Bauer ◽  
Karin Treyer ◽  
cristina antonini ◽  
Joule Bergerson ◽  
Matteo Gazzani ◽  
...  

Natural gas based hydrogen production with carbon capture and storage is referred to as blue hydrogen. If substantial amounts of CO2 from natural gas reforming are captured and permanently stored,...


Author(s):  
Debbie Polson ◽  
Andrew Curtis

The inherent uncertainty in information about the Earth's subsurface requires experts to interpret and reach judgements about geological data based on their individual experience and expertise. This is particularly true for the geological storage of CO2 in subsurface saline aquifers where the fate of the injected CO2 needs to be predicted far into the future. In this chapter, linear modelling is used in a structured elicitation exercise to estimate the relative influence of individual experts within a group and to assess whether a group consensus reflects a genuine shared opinion or is biased towards or away from any dominant member or subgroup. The method is applied to a real expert evaluation of the carbon storage potential of a siliciclastic formation. This reveals herding behaviour amongst the experts, and levels of inter-expert influence that are undue given individual experts' levels of expertise, though neither phenomena was apparent during the meeting.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1199
Author(s):  
Liang Zhang ◽  
Tingting Xue ◽  
Feifei Gao ◽  
Ruteng Wei ◽  
Zhilei Wang ◽  
...  

Given that the global winegrape planting area is 7.2×106 hm2, the potential for winegrape crop-mediated carbon capture and storage as an approach to reducing greenhouse gas emissions warranted further research. Herein, we employed an allometric model of various winegrape organs to assess biomass distributions, and we evaluated the carbon storage distribution characteristics associated with vineyard ecosystems in the Hongsibu District of Ningxia. We found that the total carbon storage of the Vitis vinifera ‘Cabernet Sauvignon’ vineyard ecosystem was 55.35 t·hm−2, of which 43.12 t·hm−2 came from the soil, while the remaining 12.23 t·hm−2 was attributable to various vine components including leaves (1.85 t·hm−2), fruit (2.16 t·hm−2), canes (1.83 t·hm−2), perennial branches (2.62 t·hm−2), and roots (3.78 t·hm−2). Together, these results suggested that vineyards can serve as an effective carbon sink, with the majority of carbon being sequestered at the soil surface. Within the grapevines themselves, most carbon was stored in perennial organs including perennial branches and roots. Allometric equations based on simple and practical biomass and biometric measurements offer a means whereby grape-growers and government entities responsible for ecological management can better understand carbon distribution patterns associated with vineyards.


Sign in / Sign up

Export Citation Format

Share Document