Energetic Electron Acceleration in Unconfined Reconnection Jets

Author(s):  
Guo Chen ◽  
Huishan Fu ◽  
Ying Zhang ◽  
Xiaocan Li ◽  
Yasong Ge ◽  
...  

<p>Magnetic reconnection in astronomical objects such as solar corona and the Earth’s magnetotail theoretically produces a fast jet toward the object (known as a confined jet as it connects to the object through magnetic field lines) and a fast jet departing the object (known as an unconfined jet as it propagates freely in space). So far, energetic electron acceleration has been observed in the confined jet but never in the unconfined jet, arousing a controversy about whether or not reconnection jets can intrinsically accelerate electrons. Our study is focused on the electron acceleration in unconfined reconnection jet based on Cluster observations and VPIC simulations.</p>

2020 ◽  
Author(s):  
Huishan Fu

<p>During magnetic reconnection, magnetic energy is explosively converted to particle energy and consequently electrons are accelerated to hundreds of keV that are dangerous to spacecraft and astronauts. To date, how and where the acceleration happens during reconnection is still unknown. Also, how efficient can the acceleration be remains a puzzle. Using spacecraft measurements (e.g., Cluster and MMS) and numerical simulations, many attempts have been made to answer these questions during the last twenty years. In this talk, I will briefly review these progresses and then show our recent results in understanding these issues. Specifically, I will (1) report a super-efficient electron acceleration by magnetic reconnection in the Earth’s magnetotail, during which electron fluxes are enhanced by 10000 times within 30 seconds; (2) discuss the mechanisms leading to super-efficient electron acceleration; (3) report the first evidence of electron acceleration at a reconnecting magnetopause, during which the acceleration process is nonadiabatic; and (4) report electron acceleration in the </p>


2020 ◽  
Author(s):  
Takuma Nakamura ◽  
Ferdinand Plaschke ◽  
Hiroshi Hasegawa ◽  
Yi-Hsin Liu ◽  
Kyoung-Joo Hwang ◽  
...  

<p>When the magnetic field is oriented nearly perpendicular to the direction of the plasma shear flow, the flow easily satisfies the super-Alfvénic unstable condition for the Kelvin-Helmholtz (KH) instability. This configuration is realized at the Earth’s low-latitude magnetopause when the interplanetary magnetic field (IMF) is strongly northward or southward. Indeed, clear signatures of the KH waves have been frequently observed during periods of the northward IMF. However, these signatures have been much less frequently observed during the southward IMF. In this work, we performed the first 3-D fully kinetic simulation of the KH instability at the magnetopause under the southward IMF condition. The simulation demonstrates that magnetic reconnection, with a typical fast rate on the order of 0.1, is induced at multiple locations along the vortex edge in an early non-linear growth phase of the KH instability. The reconnection outflow jet, which grows in the direction nearly perpendicular to the initial shear flow, significantly disrupt the flow of the non-linear KH vortex. On the other hand, the shear and vortex flow strongly bends and twists the reconnected field lines towards the direction out of the reconnection plane. The resulting coupling of the complex field and flow patterns within the magnetopause boundary layer leads to a quick decay of the vortex structure. These simulation results suggest that clear signatures of the KH waves are expected to be observed only for a limited phase during periods of the southward IMF, which may explain the difference in the observation probability of KH waves between northward and southward IMFs.</p>


2020 ◽  
Author(s):  
Karlheinz Trattner ◽  
Stephen Fuselier ◽  
Steven Petrinec ◽  
James Burch ◽  
Paul Cassak ◽  
...  

<p>The interplanetary magnetic field (IMF) convected with the solar wind drapes around the region of space dominated by Earth’s geomagnetic field and undergoes a process called magnetic reconnection at the magnetopause; the boundary layer that separates these two distinct regimes. Magnetic reconnection changes the topology of magnetic field lines and is known to convert magnetic energy into kinetic energy and heat. This fundamental process occurs in many environments, spanning from laboratory plasmas to the heliosphere, the solar atmosphere, and to astrophysical phenomena. Magnetic reconnection at the Earth’s magnetopause has been observed at various times and places as either anti-parallel and/or component reconnection. A model known as the Maximum Magnetic Shear Model combines these two scenarios, creating long reconnection lines crossing the dayside magnetopause along a ridge of maximum magnetic shear. <br>The connection points between the anti-parallel and the component reconnection segments of the reconnection line are known as ‘Knee’ regions. Using observations from the MMS satellites, it was shown that the location of the Knee region depends strongly on the local draping conditions of the IMF across the magnetopause, with certain draping conditions causing a deflection of the location along the anti-parallel reconnection region. This study discusses an event that shows that the entire component reconnection X-line crossing the dayside magnetopause can be affected by this deflection. This result emphasizes the importance of anti-parallel reconnection that seems to control where component reconnection is occurring. </p>


1980 ◽  
Vol 91 ◽  
pp. 487-489 ◽  
Author(s):  
B. V. Somov ◽  
S. I. Syrovatskii

Solution of the nonlinear MHD problem of plasma flow in an increasing dipolar magnetic field is obtained in the approximation of a strong field. The distributions of plasma velocity, displacement, and density are calculated. The situation when the magnetic dipole is ‘increased’ by rapid process of magnetic reconnection or current sheet rupture is illustrated. Possible applications are discussed in connection with plasma ejections from chromosphere in corona.


2000 ◽  
Vol 195 ◽  
pp. 443-444
Author(s):  
B. T. Welsch ◽  
D. W. Longcope

“Transient brightenings” (or “microflares”) regularly deposit 1027 ergs of energy in the solar corona, and account for perhaps 20% of the active corona's power (Shimizu 1995). We assume these events correspond to episodes of magnetic reconnection along magnetic separators in the solar corona. Using the techniques of magnetic charge topology, we model active region fields as arising from normally distributed collections of “magnetic charges”, point-like sources/sinks of flux (or field lines). Here, we present statistically determined separator (X-ray loop) lengths, derived from first principles. We are in the process of statistical calculations of heating rates due to reconnection events along many separators.


2013 ◽  
Vol 9 (7) ◽  
pp. 426-430 ◽  
Author(s):  
H. S. Fu ◽  
Yu. V. Khotyaintsev ◽  
A. Vaivads ◽  
A. Retinò ◽  
M. André

1975 ◽  
Vol 196 ◽  
pp. L129 ◽  
Author(s):  
N. R., Jr. Sheeley ◽  
J. D. Bohlin ◽  
G. E. Brueckner ◽  
J. D. Purcell ◽  
V. E. Scherrer ◽  
...  

2003 ◽  
Vol 21 (6) ◽  
pp. 1249-1256 ◽  
Author(s):  
O. E. Malandraki ◽  
E. T. Sarris ◽  
G. Tsiropoula

Abstract. Solar energetic particle fluxes (Ee > 38 keV) observed by the ULYSSES/HI-SCALE experiment are utilized as diagnostic tracers of the large-scale structure and topology of the Interplanetary Magnetic Field (IMF) embedded within two well-identified Interplanetary Coronal Mass Ejections (ICMEs) detected at 56° and 62° south heliolatitudes by ULYSSES during the solar maximum southern high-latitude pass. On the basis of the energetic solar particle observations it is concluded that: (A) the high-latitude ICME magnetic structure observed in May 2000 causes a depression in the solar energetic electron intensities which can be accounted for by either a detached or an attached magnetic field topology for the ICME; (B) during the traversal of the out-of-ecliptic ICME event observed in July 2000 energetic electrons injected at the Sun are channeled by the ICME and propagate freely along the ICME magnetic field lines to 62° S heliolatitude.Key words. Interplanetary physics (energetic particles; interplanetary magnetic fields)


Sign in / Sign up

Export Citation Format

Share Document