Generating sea-level information for coastal adaptation: a risk management perspective

Author(s):  
Jochen Hinkel

<p><span>Despite the widespread need to use sea-level rise information in coastal adaptation decision making, the production of this information rarely starts from a decision making perspective. This constitutes a major gap, because the specific sea-level information needed for adaptation depends on the type of decision a coastal decision maker is facing. Recent work developed in the context of the World <span lang="en-GB">C</span><span lang="en-GB">limate</span><span lang="en-GB">R</span><span lang="en-GB">esearch</span>Program (WCRP) Grand Challenge “Regional Sea-Level Change and Coastal Impacts” and the Special Report on the Ocean and Cryosphere in a Changing Climate (SROCC) of the Intergovernmental Panel on Climate Change (IPCC) has started to address this gap by drawing upon the decision analysis literature. This paper presents this work identifying what kind of mean sea-level rise (SLR) information is needed for local coastal adaptation decisions. A special emphasis is placed on the contributions of the melting of the ice sheets of Greenland and Antarctica to global mean SLR, as <span lang="en-GB">t</span><span lang="en-GB">hese processes </span>may contribute significantly to future SLR and, at the same time, are most uncertain. First, different types of coastal adaptation decisions are characterized in terms of decision horizons and users' <span lang="en-GB">u</span><span lang="en-GB">ncertainty</span>tolerance. Next, suitable decision analysis approaches and sea-level information required for these are identified. Finally it is discussed if and how these information needs can be met given the state-of-the-art of sea-level science. It is found that four types of information are needed: i) probabilistic predictions for short term decisions when users are uncertainty tolerant; ii) high-end and low-end SLR scenarios chosen for different levels of uncertainty tolerance; iii) upper bounds of SLR for users with a low uncertainty tolerance; and iv) learning scenarios derived from estimating what knowledge will plausibly emerge about SLR over time. Probabilistic predictions can only be attained for the near term (i.e., 2030-2050) and for locations for which modes of climate variability are well understood and the vertical land movement contribution to local sea-levels is small. Meaningful SLR upper bounds cannot be defined unambiguously from a physical perspective. Low to high-end scenarios for different levels of uncertainty tolerance, and learning scenarios can be produced, but this involves both expert and user judgments. The decision analysis procedure elaborated here can be applied to other types of climate information that are required for adaptation purposes.</span></p>

2021 ◽  
Author(s):  
◽  
Georgina Hart

<p>The Earth's climate system is entering a period of dynamic change after millennia of relatively stable climate. Coastal communities will need to adapt to dynamically shifting coastal environments as the climate system changes and sea levels rise. This study adds to a growing literature that investigates coastal vulnerability, adaptation, and resilience to climate change. It investigates regional scale social and institutional barriers to adaptation to sea level rise; examines the exposure, sensitivity and adaptation options at two coastal settlements in the Auckland region – Mission Bay/Kohimarama and Kawakawa Bay; and it analyses coastal adaptation response options from a resilience perspective. Mission Bay/Kohimarama and Kawakawa Bay, Auckland will experience increasing coastal hazard risk as the numbers of people and property potentially affected by storm events increases as sea level rises. Findings from the present study suggest that existing settlements in the Auckland region may already be 'locked in' to a coastal adaptation approach focused on maintaining the current coastline through coastal stabilisation, an approach that will decrease community resilience and increase vulnerability in the long term, even if this is found to be a successful response in the short term. Retreat offers an alternative approach that is strongly aligned with reducing community vulnerability and increasing resilience; however, strong opposition from communities to any retreat approach is expected. Developing trusted climate science information, education around coastal hazard risk, and participatory community led decision-making are identified as central enablers for a retreat approach to be included as a viable coastal adaptation option for communities in the Auckland region.</p>


Climate ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 69 ◽  
Author(s):  
Rabeya Akter ◽  
Tansir Zaman Asik ◽  
Mohiuddin Sakib ◽  
Marin Akter ◽  
Mostofa Najmus Sakib ◽  
...  

Salinity intrusion through the estuaries in low-lying tide-dominated deltas is a serious threat that is expected to worsen in changing climatic conditions. This research makes a comparative analysis on the impact of salinity intrusion due to a reduced upstream discharge, a sea level rise, and cyclonic conditions to find which one of these event dominates the salinity intrusion. A calibrated and validated salinity model (Delft3D) and storm surge model (Delft Dashboard) are used to simulate the surface water salinity for different climatic conditions. Results show that the effects of the reduced upstream discharge, a sea level rise, and cyclones cause different levels of impacts in the Ganges-Brahmaputra-Meghna (GBM) delta along the Bangladesh coast. Reduced upstream discharge causes an increased saltwater intrusion in the entire region. A rising sea level causes increased salinity in the shallower coast. The cyclonic impact on saltwater intrusion is confined within the landfall zone. These outcomes suggest that, for a tide dominated delta, if a sea level rise (SLR) or cyclone occurred, the impact would be conditional and local. However, if the upstream discharge reduces, the impact would be gradual and along the entire coast.


2013 ◽  
Vol 263 ◽  
pp. 264-272 ◽  
Author(s):  
Anna C. Linhoss ◽  
Gregory A. Kiker ◽  
Matthew E. Aiello-Lammens ◽  
Ma. Librada Chu-Agor ◽  
Matteo Convertino ◽  
...  

2020 ◽  
Author(s):  
Rosanne Martyr-Koller ◽  
Tabea Lissner ◽  
Carl-Friedrich Schleussner

&lt;p&gt;Climate impacts increase with higher warming and evidence is mounting that impacts increase strongly above 1.5&amp;#176;C. Therefore, adaptation needs also rise substantially at higher warming levels. Further&lt;strong&gt;, &lt;/strong&gt;limits to adaptation will be reached above 1.5&amp;#176;C and loss and damage will be inferred. Coastal Nature-based Solutions (NbS) have arisen as popular adaptation options, particularly for coastal developing economies and Small Island Developing States (SIDS), because of their lower overall costs compared to traditional grey infrastructure approaches such as seawalls and levees; their economic co-benefits through positive effects on sectors such as tourism and fisheries; and a broader desire to shift toward so-called blue economies. Two NbS of particular interest for coastal protection are: 1) coral reefs, which reduce coastal erosion and flooding through wave attenuation; and 2) mangroves, which provide protection from storms, tsunamis and coastal erosion. Although there is international enthusiasm to implement these solutions, there is limited understanding of the future viability of these ecosystems, particularly in their capacities as coastal adaptation service providers, in a warmer world.&lt;/p&gt;&lt;p&gt;In this presentation, we highlight how long and with how much coverage coral and mangrove ecosystems can provide coastal protection services for future climate scenarios, using air temperature and sea level rise as climate change indicators. A mathematical model for each ecosystem is developed, based on the physical parameters necessary for the sustainability of these ecosystems. We investigate the protective capabilities of each ecosystem under warming and sea level rise scenarios compatible with: below 1.5&amp;#176;C warming; below 2&amp;#176;C warming; warming based on current global commitments to carbon emissions reductions (3-3.5&amp;#176;C); and with no carbon mitigation (6&amp;#176;C). Results show what temperature and sea level rise values beyond which these ecosystems can no longer provide coastal protective services. These results have also been framed in a temporal window to show when these services may not be feasible, beyond which more costly adaptation measures and/or loss and damage may be incurred.&lt;/p&gt;


2021 ◽  
Vol 17 (3) ◽  
Author(s):  
Maria Bargh ◽  
Ellen Tapsell

There is growing respect for and recognition of te ao Mäori within Aotearoa’s environmental policy and management space. However, to ensure that Aotearoa can build a better future equitably a ‘tika transition’ must be realised, wherey iwi, hapü and Mäori (the rangatiratanga sphere) and the Crown (kawanatanga sphere) exist within distinct and equal political entities, with the rangatiratanga sphere leading and governing tikanga and mätauranga Mäori policy and legislation. We examine two prominent environmental issues – sea level rise and taonga species protection – facing iwi, hapü, Mäori and the Crown, exploring the barriers, solutions and positive steps towards a ‘tika transition’ in each area. We recommend that policy and legislation include stronger instruments for shared decision making and specific funding for iwi, hapü and mana whenua to strengthen the rangatiratanga sphere. It is acknowledged that the barriers and solutions are interconnected and will rely on good relationship building and trust, power sharing and knowledge sharing, and policy and legislation that allows for and supports the rangatiratanga sphere as its own distinct space for tikanga-based governance and jurisdiction.


2021 ◽  
Author(s):  
◽  
Georgina Hart

<p>The Earth's climate system is entering a period of dynamic change after millennia of relatively stable climate. Coastal communities will need to adapt to dynamically shifting coastal environments as the climate system changes and sea levels rise. This study adds to a growing literature that investigates coastal vulnerability, adaptation, and resilience to climate change. It investigates regional scale social and institutional barriers to adaptation to sea level rise; examines the exposure, sensitivity and adaptation options at two coastal settlements in the Auckland region – Mission Bay/Kohimarama and Kawakawa Bay; and it analyses coastal adaptation response options from a resilience perspective. Mission Bay/Kohimarama and Kawakawa Bay, Auckland will experience increasing coastal hazard risk as the numbers of people and property potentially affected by storm events increases as sea level rises. Findings from the present study suggest that existing settlements in the Auckland region may already be 'locked in' to a coastal adaptation approach focused on maintaining the current coastline through coastal stabilisation, an approach that will decrease community resilience and increase vulnerability in the long term, even if this is found to be a successful response in the short term. Retreat offers an alternative approach that is strongly aligned with reducing community vulnerability and increasing resilience; however, strong opposition from communities to any retreat approach is expected. Developing trusted climate science information, education around coastal hazard risk, and participatory community led decision-making are identified as central enablers for a retreat approach to be included as a viable coastal adaptation option for communities in the Auckland region.</p>


Author(s):  
Jessica Kelln ◽  
Sönke Dangendorf ◽  
Jürgen Jensen ◽  
Justus Patzke ◽  
Wolfgang Niemeier ◽  
...  

Global mean sea level has risen over the 20th century (Hay et al. 2015; Dangendorf et al. 2017) and under sustained greenhouse gas emissions it is projected to further accelerate throughout the 21st century (Church et al. 2013) with large spatial variations, significantly threatening coastal communities. Locally the effects of geocentric (sometimes also referred to absolute) sea level rise can further be amplified by vertical land motion (VLM) due to natural adjustments of the solid earth to the melting of the large ice-sheets during the last deglaciation (GIA) or local anthropogenic interventions such as groundwater or gas withdrawal (e.g. Santamaría-Gómez et al. 2017). Both, the observed and projected geocentric sea level rise as well as VLM are critically important for coastal planning and engineering, since only their combined effect determines the total threat of coastal flooding at specific locations. Furthermore, due large spatial variability of sea level, information is required not only at isolated tide gauge (TG) locations but also along the coastline stretches in between.


Author(s):  
Jose A Marengo ◽  
Jose A Marengo ◽  
Luci H. Nunes ◽  
Luci H. Nunes ◽  
Celia R.G. Souza ◽  
...  

The METROPOLE Project is an international collaboration between Brazil, the United Kingdom, and the United States designed to evaluate local decision making processes and to provide feedback to local urban managers on possible actions toward adaption to sea level rise (SLR). The goal of the project is to help coastal communities better understand factors that facilitate or hinder their intrinsic, local decision-making processes related to planning for adaptation to risk. The test used case sea level rise to develop case studies on long-term planning by local government and society as a means to gauge the of municipalities in different settings to address possible future risks. The framework was designed by an interdisciplinary team that incorporated social and natural scientists from these three nations, and which included local government officials. This paper focuses on some of the factors that affect decision-making in the coastal city of Santos, in the state of Sao Paulo in southeastern Brazil, and provides insight on possible actions that a coastal city, such as Santos, can do to prepare for impacts of SLR.


Sign in / Sign up

Export Citation Format

Share Document