Breach the dikes! How to design saltmarsh restoration schemes for mitigating coastal flooding.

Author(s):  
Joshua Kiesel ◽  
Mark Schuerch ◽  
Elizabeth K. Christie ◽  
Iris Möller ◽  
Tom Spencer ◽  
...  

<p>Managed realignment (MR), a form of of nature-based coastal adaptation to reduce flood and erosion risk, involves the abandonment of existing sea defences and their relocation further inland. MR aims to (re)create intertidal habitats, such as saltmarshes, between the old and new lines of defence; as well as flood water storage. The newly created habitats dissipate wave energy and thus provide new natural coastal protection. However, the assessment of the success of MR is difficult, as restoration targets are often vague and data on project performance are scarce. The few studies that do exist show a lack of understanding about the effects of MR scheme design on high water level (HWL) attenuation and thus its coastal protection function.</p><p>Here we present the results of a 2-D hydrodynamic model, calibrated and validated against field measurements of equinoctial tides between August and October 2017, taken within, and seaward of, the Freiston Shore MR site, The Wash, eastern England. Using this model, we performed sensitivity analyses to explore whether or not, and how, the Freiston Shore MR scheme design affects HWL attenuation. For this purpose we changed the configuration of the old defence line and the breaches created within it for renewed tidal exchange and manipulated the digital elevation model of within-site topography. Specifically, we applied six scheme design scenarios (two scenarios with three breaches and varying MR areas, three single breach scenarios of different breach width and one bank removal scenario) and assessed High Water Level (HWL) attenuation rates for each scenario.</p><p>Our results show that scheme design, particularly storage area and number and size of breaches, of the Freiston Shore MR site had a significant effect on the site´s HWL attenuation capacity. When the tidal prism is varied by changing the number and size of breaches and the storage area kept constant, modelled HWL attenuation rates increased with decreasing tidal prism. However, largest HWL attenuation rates (> 10 cm km<sup>-1</sup>) were only obtained if the MR area was of sufficient size, therefore, it is only the larger sites which are exhibiting effective coastal protection. Consequently, the maximum modelled HWL attenuation rate occurred (up to 73 cm km<sup>-1</sup>) for the scenario with the largest area (142 ha).</p><p>The Mean High Water Depth (MHWD) from each of these scenarios explained most of the variation in HWL attenuation between the scenarios (R² = 0.996). This strong correlation may help to inform the construction of more efficient MR schemes with respect to coastal protection in the future.</p>

Author(s):  
Xiejun Shu ◽  
Senhui Jiang ◽  
Ruijie Li

For providing a better shelter condition, it is necessary to build a breakwater in Zhongzui Bay. In order to know whether mooring area meets the requirement after engineering construction and compare the mooring area between solid breakwater and permeable breakwater, a numerical simulation method is used in the sheltering harbor of Zhongzui Bay. The used Mild-slope equation which describes wave refraction, diffraction and reflection, considers the steep slope bottom and effect of energy dissipation. It has been validated to fit for simulating wave transformation in the coastal zone. Under extreme high water level and design high water level, wave fields in the calculation area of three wave types in three different return periods are simulated by using this method respectively. In addition, wave height in front of breakwater can be provided. Then the wave parameters and the mooring area of two occasions, with and without breakwater, are gained in calculation area. Based on these results, some conclusions are presented in the end.


2018 ◽  
Vol 246 ◽  
pp. 01007
Author(s):  
Biqiong Wu ◽  
Wei Zheng ◽  
Xinkai Ren ◽  
Tao Xu ◽  
Xiao Guo

After Three Gorges Reservoir building up, the natural river course and the near hillside inside the backwater region are inundated to form a fairly wide man-made lake which affects the hydrological characteristics and floodwater transmission to different degrees. When the reservoir impound to high water level, the conflux time is obviously shortened, the flood-peak discharge increase, and the peak type became sharper. The change of runoff yield and concentration makes the forecast scheme unable to be applied well. Based on the practice of Three Gorges Reservoir operation, the rainfall-runoff characteristics of the backwater region under the condition of high water level are analysed and summarized, then a set of unit hydrographs suitable for rainfall-runoff calculation are recalibrated, which has great reference value for hydrological forecasting of Three Gorges region.


1969 ◽  
Vol 106 (1) ◽  
pp. 77-88 ◽  
Author(s):  
N. G. T. Fannin

SUMMARYThe structures are comparable with stromatolites seen in modern “flats” environments and tufa occurring in joints in the granite—gneiss basement is compared with modern and fossil forms. Finely laminated (? varved) carbonates with a large lateral persistency (1: 50,000) are referred to periods of high water level and are believed to show evidence of seasonal algal bloom. The presence of widespread stromatolite structures is consistent with earlier environmental interpretations of the Orkney rocks.


Sign in / Sign up

Export Citation Format

Share Document