net heterotrophy
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 9)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Shantelle Smith ◽  
Katye E. Altieri ◽  
Mhlangabezi Mdutyana ◽  
David R. Walker ◽  
Ruan G. Parrott ◽  
...  

Abstract. The production and consumption of ammonium (NH4+) are essential upper-ocean nitrogen cycle pathways, yet in the Southern Ocean where NH4+ has been observed to accumulate in surface waters, its mixed-layer cycling remains poorly understood. For surface samples collected between Cape Town and the marginal ice zone (MIZ) in winter 2017, we found that NH4+ concentrations were five-fold higher than is typical for summer, and lower north than south of the Subantarctic Front (SAF; 0.01–0.26 µM versus 0.19–0.70 µM). Our observations confirm that NH4+ accumulates in the Southern Ocean’s winter mixed layer, particularly in polar waters. NH4+ uptake rates were highest near the Polar Front (PF; 12.9 ± 0.4 nM day−1) and in the Subantarctic Zone (10.0 ± 1.5 nM day−1), decreasing towards the MIZ (3.0 ± 0.8 nM day−1) despite high ambient NH4+ concentrations, likely due to low sea surface temperatures and light availability. By contrast, rates of NH4+ oxidation were higher south than north of the PF (16.0 ± 0.8 versus 11.1 ± 0.5 nM day−1), perhaps due to the lower light and higher iron conditions characteristic of polar waters. Augmenting our dataset with NH4+ concentration measurements spanning the 2018/2019 annual cycle reveals that mixed-layer NH4+ accumulation south of the SAF likely derives from sustained heterotrophic NH4+ production in late summer through winter that outpaces NH4+ consumption by temperature-, light, and iron-limited microorganisms. Our observations thus imply that the Southern Ocean becomes a biological source of CO2 to the atmosphere for half the year not only because nitrate drawdown is weak, but also because the ambient conditions favour net heterotrophy and NH4+ accumulation.


2021 ◽  
Author(s):  
Maximilian Berthold ◽  
Martin Paar

AbstractAquatic ecosystems nowadays are under constant pressure, either from recent or historical events. In most systems with increased nutrient supply, submerged macrophytes got replaced by another stable state, dominated by phytoplankton as main primary producer. Yet, reducing the nutrient supply did not yield the aimed goal of restored habitats for submerged macrophytes in systems worldwide. The question arises, why submerged macrophytes do not re-colonize, and if they are actually competitive. Therefore, primary production assays were conducted in ex-situ bentho-pelagic mesocosms and compared to the actual ecosystem, a turbid brackish lagoon of the southern Baltic Sea. Mesocosm were either manipulated to be colonized by macrophytes, or stayed phytoplankton dominated. Oxygen evolution was monitored over a period of five months in 5 min (mesocosms) to 10 min (ecosystem) intervals. Surface and depth-integrated production was calculated to analyse seasonal and areal resolved production patterns. It was found that macrophyte mesocosms were more stable, when considering only surface O2 production. However, calculating depth-integrated production resulted in net-heterotrophy in both shallow mesocosms approaches and the actual ecosystem. This heterotrophy is likely mediated by sediment respiration and POC accumulation in mesocosms, and a low share of productive to respiring water column in the actual ecosystem. Therefore, it seems unlikely that macrophytes will re-settle, as constant net-heterotrophy may allow for high-nutrient turnover at sediment-water interfaces and within the water column, favouring phytoplankton. Changes within the ecosystem cannot be expected without further restoration measures within and in the systems proximity.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ulrike Braeckman ◽  
Francesca Pasotti ◽  
Ralf Hoffmann ◽  
Susana Vázquez ◽  
Angela Wulff ◽  
...  

AbstractClimate change-induced glacial melt affects benthic ecosystems along the West Antarctic Peninsula, but current understanding of the effects on benthic primary production and respiration is limited. Here we demonstrate with a series of in situ community metabolism measurements that climate-related glacial melt disturbance shifts benthic communities from net autotrophy to heterotrophy. With little glacial melt disturbance (during cold El Niño spring 2015), clear waters enabled high benthic microalgal production, resulting in net autotrophic benthic communities. In contrast, water column turbidity caused by increased glacial melt run-off (summer 2015 and warm La Niña spring 2016) limited benthic microalgal production and turned the benthic communities net heterotrophic. Ongoing accelerations in glacial melt and run-off may steer shallow Antarctic seafloor ecosystems towards net heterotrophy, altering the metabolic balance of benthic communities and potentially impacting the carbon balance and food webs at the Antarctic seafloor.


2021 ◽  
Author(s):  
Hana Jurikova ◽  
Osamu Abe ◽  
Fuh-Kwo Shiah ◽  
Mao-Chang Liang

Abstract. South China Sea (SCS), world’s largest marginal sea, plays an important role in the global as well as regional biogeochemical cycling of carbon and oxygen. However, its overall metabolic balance, primary production rates, and their link to East Asian Monsoon forcing still remain poorly constrained. Here, we report seasonal trends in triple oxygen isotope composition (17Δ) of dissolved O2, a tracer for biological O2, gross primary production (GP; inferred from δ17O and δ18O values), and net community production (NP; evaluated from oxygen–argon ratios) from the SouthEast Asian Time-series Study (SEATS) in SCS. Our results suggest stable mixed-layer GP rates of 1.8 g C m−2 d−1 and NP of −0.02 g C m−2 d−1 during the summer southwest monsoon, indicating the prevalence of net heterotrophy. During winter months characterised by stronger northeast monsoon forcing, the system is more dynamic with variable production rates, which may shift the metabolism from net heterotrophy to net autotrophy (NP up to ~0.15 g C  m−2 d−1). These findings underscore the importance of monsoon intensity on tilting the carbon balance from source to sink in a warm oligotrophic sea, and on driving the regional circulation pattern. Finally, our data from the deeper regions show that SCS circulation is strongly affected by monsoon wind forcing, with a larger part of the water column down to at least 400 m depth fully exchanged during a winter, suggesting the 17Δ of deep O2 as a valuable novel conservative tracer for probing mixing processes from a new perspective.


2020 ◽  
Author(s):  
Celine Gommet ◽  
Ronny Lauerwald ◽  
Philippe Ciais ◽  
Pierre Regnier

<p>Inland waters receive important amounts of dissolved organic carbon (DOC) from surrounding soils, which drives an important net-heterotrophy and subsequent CO<sub>2</sub> emission from these systems.  At the same time, this DOC transfer decreases the soil carbon sequestration capacity, which may limit the efficiency of the land carbon sink. The variation of DOC stocks and fluxes in time and space is modeled using the ORCHILEAK model that couples terrestrial ecosystem processes, carbon emissions from soils to headwater streams by runoff and drainage, as well as carbon decomposition and transport in rivers until export to the coastal ocean. The runs were performed at the resolution of 0.5°, taking advantage of the relatively dense observations of soil and river DOC available for European catchments.  The model was first evaluated for the hydrology by comparing the discharge at different stations along several large European rivers. The DOC measurements were used to calibrate the different parameters of the ORCHILEAK model and to evaluate the model results. ORCHILEAK was then used to generate the first European map of DOC stocks and leaching for the four seasons. We estimate a soil DOC stock at 71 TgC and a DOC leaching flux of 7,8 TgC/yr, largely dominated by runoff exports during the winter season. Our model results also allow to identify the underlying processes controlling the fraction of terrestrial NPP exported to the European inland water network. The next step will be to use the model to hindcast historical DOC fluxes and predict their evolution over the 21<sup>st</sup> century using climate change and land use projections from the SSP-RCP scenarios developed for the IPCC assessment report.</p>


2019 ◽  
Author(s):  
Bryce R. Van Dam ◽  
Christian Lopes ◽  
Christopher L. Osburn ◽  
James W. Fourqurean

Abstract. The net ecosystem productivity (NEP) of two contrasting seagrass meadows within one of the largest seagrass ecosystems in the world, Florida Bay, was assessed using direct measurements over consecutive diel cycles. We report significant differences between NEP determined by dissolved inorganic carbon (NEPDIC) and by dissolved oxygen (NEPDO), likely driven by differences in air-water gas exchange and contrasting responses to variations in light intensity. In this first direct determination of NEPDIC in seagrasses, we found that both seagrass ecosystems were net heterotrophic, on average, despite large differences in seagrass net aboveground primary productivity. Net ecosystem calcification (NEC) was also negative, indicating that both sites were net dissolving of carbonate minerals. We suggest that a combination of carbonate dissolution and respiration in sediments exceeded seagrass primary production and calcification, supporting our negative NEP and NEC measurements. Furthermore, a simple budget analysis indicates that these two seagrass meadows have contrasting impacts on pH buffering of adjacent systems, due to variations in the TA : DIC export ratio. The results of this study highlight the need for better temporal resolution, as well as accurate carbonate chemistry accounting in future seagrass metabolism studies.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5966 ◽  
Author(s):  
Steven M.A.C. van Heuven ◽  
Alice E. Webb ◽  
Didier M. de Bakker ◽  
Erik Meesters ◽  
Fleur C. van Duyl ◽  
...  

Anthropogenic pressures threaten the health of coral reefs globally. Some of these pressures directly affect coral functioning, while others are indirect, for example by promoting the capacity of bioeroders to dissolve coral aragonite. To assess the coral reef status, it is necessary to validate community-scale measurements of metabolic and geochemical processes in the field, by determining fluxes from enclosed coral reef patches. Here, we investigate diurnal trends of carbonate chemistry, dissolved organic carbon, oxygen, and nutrients on a 20 m deep coral reef patch offshore from the island of Saba, Dutch Caribbean by means of tent incubations. The obtained trends are related to benthic carbon fluxes by quantifying net community calcification (NCC) and net community production (NCP). The relatively strong currents and swell-induced near-bottom surge at this location caused minor seawater exchange between the incubated reef and ambient water. Employing a compensating interpretive model, the exchange is used to our advantage as it maintains reasonably ventilated conditions, which conceivably prevents metabolic arrest during incubation periods of multiple hours. No diurnal trends in carbonate chemistry were detected and all net diurnal rates of production were strongly skewed towards respiration suggesting net heterotrophy in all incubations. The NCC inferred from our incubations ranges from −0.2 to 1.4 mmol CaCO3 m−2 h−1 (−0.2 to 1.2 kg CaCO3 m−2 year−1) and NCP varies from −9 to −21.7 mmol m−2 h−1 (net respiration). When comparing to the consensus-based ReefBudget approach, the estimated NCC rate for the incubated full planar area (0.36 kg CaCO3 m−2 year−1) was lower, but still within range of the different NCC inferred from our incubations. Field trials indicate that the tent-based incubation as presented here, coupled with an appropriate interpretive model, is an effective tool to investigate, in situ, the state of coral reef patches even when located in a relatively hydrodynamic environment.


Sign in / Sign up

Export Citation Format

Share Document