Regional differences in processes controlling Arctic sea ice floe size distribution in Chukchi Sea, East Siberian and Fram Strait during pre-ponding season

Author(s):  
Yanan Wang ◽  
Byongjun Hwang ◽  
Rajlaxmi Basu ◽  
Jinchang Ren

<p>The floe size distribution (FSD) is important to the physical and biological processes in the marginal ice zone (MIZ). The FSD is controlled by ice advection, thermodynamics (lateral melting), and dynamics (winds, tides, currents and ocean swell). These thermodynamic and dynamic conditions are different between the western Arctic (e.g., Chukchi and Beaufort Seas) and the eastern Arctic (e.g., Fram Strait). For example, the MIZ in the western Arctic is strongly influenced by a warm ocean due to enhanced sea-ice albedo feedback, while the MIZ in the eastern Arctic is strongly influenced by ocean swell. We hypothesise that this regional difference can affect the FSD differently between the two regions. To address the hypothesis, we analysed the FSD data derived the images from MEDEA and synthetic aperture radar (SAR) TerraSAR-X in Chukchi Sea, East Siberian Sea and Fram Strait. Our results show that the FSD in Chukchi Sea the most dynamic as it contains a larger percentage of smaller floes and undergoes a greater interannual variability in the FSD compared to East Siberian Sea and Fram Strait. In particular, the FSD in Chukchi Sea shows a notable change before and after 2012. This change is likely attributed to the severe storm occurred in early August 2012 and the presence of thinner ice in this region.</p>

1988 ◽  
Author(s):  
NAVAL POLAR OCEANOGRAPHY CENTER WASHINGTON DC

1992 ◽  
Author(s):  
NAVAL POLAR OCEANOGRAPHY CENTER WASHINGTON DC

2011 ◽  
Vol 5 (3) ◽  
pp. 1311-1334 ◽  
Author(s):  
L. H. Smedsrud ◽  
A. Sirevaag ◽  
K. Kloster ◽  
A. Sorteberg ◽  
S. Sandven

Abstract. Arctic sea ice area decrease has been visible for two decades, and continues at a steady rate. Apart from melting, the southward drift through Fram Strait is the main loss. We present high resolution sea ice drift across 79&deg N from 2004 to 2010. The ice drift is based on radar satellite data and correspond well with variability in local geostrophic wind. The underlying current contributes with a constant southward speed close to 5 cm s−1, and drives about 33 % of the ice export. We use geostrophic winds derived from reanalysis data to calculate the Fram Strait ice area export back to 1957, finding that the sea ice area export recently is about 25 % larger than during the 1960's. The increase in ice export occurred mostly during winter and is directly connected to higher southward ice drift velocities, due to stronger geostrophic winds. The increase in ice drift is large enough to counteract a decrease in ice concentration of the exported sea ice. Using storm tracking we link changes in geostrophic winds to more intense Nordic Sea low pressure systems. Annual sea ice export likely has a significant influence on the summer sea ice variability and we find low values in the 60's, the late 80's and 90's, and particularly high values during 2005–2008. The study highlight the possible role of variability in ice export as an explanatory factor for understanding the dramatic loss of Arctic sea ice the last decades.


Elem Sci Anth ◽  
2017 ◽  
Vol 5 (0) ◽  
pp. 40 ◽  
Author(s):  
Byongjun Hwang ◽  
Jeremy Wilkinson ◽  
Edward Maksym ◽  
Hans C. Graber ◽  
Axel Schweiger ◽  
...  

2020 ◽  
Vol 47 (3) ◽  
Author(s):  
Qiang Wang ◽  
Claudia Wekerle ◽  
Xuezhu Wang ◽  
Sergey Danilov ◽  
Nikolay Koldunov ◽  
...  

2019 ◽  
Vol 53 (3-4) ◽  
pp. 2481-2481
Author(s):  
Jianfen Wei ◽  
Xiangdong Zhang ◽  
Zhaomin Wang

2011 ◽  
Vol 5 (4) ◽  
pp. 821-829 ◽  
Author(s):  
L. H. Smedsrud ◽  
A. Sirevaag ◽  
K. Kloster ◽  
A. Sorteberg ◽  
S. Sandven

Abstract. Arctic sea ice area has been decreasing for the past two decades. Apart from melting, the southward drift through Fram Strait is the main ice loss mechanism. We present high resolution sea ice drift data across 79° N from 2004 to 2010. Ice drift has been derived from radar satellite data and corresponds well with variability in local geostrophic wind. The underlying East Greenland current contributes with a constant southward speed close to 5 cm s−1, and drives around a third of the ice export. We use geostrophic winds derived from reanalysis data to calculate the Fram Strait ice area export back to 1957, finding that the sea ice area export recently is about 25% larger than during the 1960's. The increase in ice export occurred mostly during winter and is directly connected to higher southward ice drift velocities, due to stronger geostrophic winds. The increase in ice drift is large enough to counteract a decrease in ice concentration of the exported sea ice. Using storm tracking we link changes in geostrophic winds to more intense Nordic Sea low pressure systems. Annual sea ice area export likely has a significant influence on the summer sea ice variability and we find low values in the 1960's, the late 1980's and 1990's, and particularly high values during 2005–2008. The study highlights the possible role of variability in ice export as an explanatory factor for understanding the dramatic loss of Arctic sea ice during the last decades.


2020 ◽  
Author(s):  
H. Jakob Belter ◽  
Thomas Krumpen ◽  
Luisa von Albedyll ◽  
Tatiana A. Alekseeva ◽  
Sergei V. Frolov ◽  
...  

Abstract. Changes in Arctic sea ice thickness are the result of complex interactions of the dynamic and variable ice cover with atmosphere and ocean. Most of the sea ice exits the Arctic Ocean through Fram Strait, which is why long-term measurements of ice thickness at the end of the Transpolar Drift provide insight into the integrated signals of thermodynamic and dynamic influences along the pathways of Arctic sea ice. We present an updated time series of extensive ice thickness surveys carried out at the end of the Transpolar Drift between 2001 and 2020. Overall, we see a more than 20 % thinning of modal ice thickness since 2001. A comparison with first preliminary results from the international Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) shows that the modal summer thickness of the MOSAiC floe and its wider vicinity are consistent with measurements from previous years. By combining this unique time series with the Lagrangian sea ice tracking tool, ICETrack, and a simple thermodynamic sea ice growth model, we link the observed interannual ice thickness variability north of Fram Strait to increased drift speeds along the Transpolar Drift and the consequential variations in sea ice age and number of freezing degree days. We also show that the increased influence of upward-directed ocean heat flux in the eastern marginal ice zones, termed Atlantification, is not only responsible for sea ice thinning in and around the Laptev Sea, but also that the induced thickness anomalies persist beyond the Russian shelves and are potentially still measurable at the end of the Transpolar Drift after more than a year. With a tendency towards an even faster Transpolar Drift, winter sea ice growth will have less time to compensate the impact of Atlantification on sea ice growth in the eastern marginal ice zone, which will increasingly be felt in other parts of the sea ice covered Arctic.


Sign in / Sign up

Export Citation Format

Share Document