A better appreciation of glacial floodplain morphodynamics reveals that disturbances are not spatially homogenous: implications for biofilm development

Author(s):  
Matteo Roncoroni ◽  
Mélanie Clémençon ◽  
Stuart Lane

<p>Recent decades have seen worldwide glacier retreat that has resulted in a significant increase in the spatial extent of proglacial margins. Such margins, by switching from being ice-covered to light-exposed, are open to potential colonization by new organisms. However, ecological succession in glacial forefields may be slowed or even precluded by the highly unstable nature of these environments and habitability might be highly variable both in time and in space.</p><p>Discharge-related processes are likely to dominate forefields, in particular during the melt season. Discharge defines the shear forces acting upon the streambed, and ultimately bed and suspended loads and the rate of morphodynamic change through the floodplains. Evidence suggests that during the melt season glacial streams continuously rework their accommodation spaces by erosion and deposition processes, resulting in low rates of environmental stability. This means that benthic organisms, such as biofilms, inhabiting those streams may continuously be under pressure.</p><p>Biofilms are surface-attached communities composed of microorganisms, they are at the base of instream food webs, and they are involved in multiple ecosystem processes. Nevertheless, their surface-attached nature leads them to be easily removed from their lodging substrates by hydraulic disturbances. Because disturbance-dominated regimes exist during the melt season in glacial streams, it should be expected that biofilms might not be able to develop or persist during the melt season. A core idea in glacial stream ecology is that biomass, either of biofilms but also of macrozoobenthos, increases by moving away from the glacial snout, but also that it fluctuates during the year and reaches its highest mass during windows of opportunity (i.e., spring and fall). Even though this paradigm might hold, it does not fully capture the complexity of glacial floodplain morphodynamics, and the possibility that some stable zones exist even in summer. This explains why biofilms are able to develop in summer, and why well-developed biofilms can be found even close to the glacier snouts during the melt season.</p><p>In this paper, we present the first insights about the reasons why biofilms can develop in glacial floodplains during the melt season and, in particular, how important stable zones are for biofilm development. Through classical morphological and morphodynamic analysis, we seek to demonstrate that disturbances are not spatially homogenous, and geomorphic processes can shape the environment creating hot spot for biota. In this view, we argue that floodplain terraces, either permanent or temporary, play a crucial role in defining where biofilms – and consequently organisms that feed on them – settle, develop and grow.</p>

1995 ◽  
Vol 31 (7) ◽  
pp. 61-68 ◽  
Author(s):  
E. Ristenpart ◽  
R. M. Ashley ◽  
M. Uhl

Studies in Germany, Belgium, France and Scotland have revealed that there are significant solids transport gradients in the depth of foul and combined sewage flows. Continuous field observations of changes in depths of sediment deposits in combined sewers have also indicated that there is an interaction between the erosion and deposition processes and changes in the mass transport of solids in regions in the overlying flow. A fuller understanding of the interactive phenomena is essential for both sewer sediment management and the minimization of associated pollution from wash-out of solids via CSOs. The paper presents results from the detailed studies in Hildesheim, Germany and those carried out in Dundee, Scotland, investigating the heterogeneity of solids movement with regard to gross solids, erosion of sewer sediments and their interactions with the suspended transport phases and the layer of very dense fluid found to be transported under certain circumstances, near the sediment bed or sewer invert (traditionally called ‘bed-load’).


1989 ◽  
pp. 151-166 ◽  
Author(s):  
G.M. MCCRACKEN ◽  
P.C. STANGEBY ◽  
C.S. PITCHER ◽  
D.H.J. GOODALL ◽  
P. Komarek

1998 ◽  
Vol 555 ◽  
Author(s):  
W. T. Pawlewicz

AbstractIon Assisted Evaporation and Magnetron Sputtering are the two most important Physical Vapor Deposition processes used for optical coatings today. Each has advantages and limitations, and each is best for different coating applications. This paper provides a brief but comprehensive comparison of the two. Starting with introductory process descriptions, the paper compares Ion Assist and Sputtering feature-by-feature and ranks them in scorecard fashion. Features examined include: adatom energetics, reactivity, materials compatibility, thickness uniformity, deposition rate, substrate temperature, durability, environmental stability, refractive indices, absorption, scatter, mechanical stress control, and scalability (chamber and substrate size). The comparison is illustrated with examples from the author's twenty-four years of optical coating experience at three companies, with more than forty coating chambers (small, medium and very large), in research, development and production coating environments.


Geografie ◽  
2012 ◽  
Vol 117 (2) ◽  
pp. 170-191 ◽  
Author(s):  
Barbora Vysloužilová ◽  
Zdeněk Kliment

Water erosion is considered to be the most important factor behind the degradation of agricultural land. Many methods of measuring soil erosion processes, using mathematical models, have been developed in recent years. The most widespread of these, USLE, and its modifications have been used as the basis for new erosion models. Two such models, USPED (Mitášová et al. 1996) and WaTEM/SEDEM (Van Rompaey et al. 2001; Van Oost et al. 2000; Verstraeten et al. 2002), have been utilized to study erosion and deposition processes in the experimental rural catchment of Černičí. River sediment transport is also calculated using the WaTEM/ SEDEM model. The results are discussed with results from USLE and a field survey. The article also presents brief instructions for implementing the models in a GIS environment.


2019 ◽  
Vol 6 (5) ◽  
pp. 190088 ◽  
Author(s):  
Shinji Sassa ◽  
Soonbo Yang

We show that a decapod crustacean, the sand bubbler crab (SBC) Scopimera globosa , uses suction, which is the tension of moisture in the sediment, to select habitats at normal times and at the time of disaster events, through a range of controlled laboratory experiments and field observations at various sandflats in Japan. When SBCs are released on fields with no spatial suction gradient, their direction of movement is random. However, the situation clearly changes with increasing suction gradients, in which case the SBCs move to suitable zones for burrowing. Predictions based on suction–burrowing relationships coupled with the knowledge of geophysical state changes induced by suction dynamics are consistent with the observed formation of habitats throughout the seasons. Such suction-induced habitat selection in SBCs manifests itself in a robust way even following sudden events such as typhoons, where erosion and deposition processes distinctly alter the geomorphological profiles, as well as the states of suction, yet consistently yielding habitats at the newly formed, suitable suction environments. Repeated battles were observed in a suitable suction environment over burrows, with the competition rate more than seven times as high as that in a critical suction environment for burrowing.


Sign in / Sign up

Export Citation Format

Share Document