The simulation of two-dimensional surface erosion and deposition processes

Author(s):  
R. Smith
1991 ◽  
Vol 06 (39) ◽  
pp. 3591-3600 ◽  
Author(s):  
HIROSI OOGURI ◽  
NAOKI SASAKURA

It is shown that, in the three-dimensional lattice gravity defined by Ponzano and Regge, the space of physical states is isomorphic to the space of gauge-invariant functions on the moduli space of flat SU(2) connections over a two-dimensional surface, which gives physical states in the ISO(3) Chern–Simons gauge theory. To prove this, we employ the q-analogue of this model defined by Turaev and Viro as a regularization to sum over states. A recent work by Turaev suggests that the q-analogue model itself may be related to an Euclidean gravity with a cosmological constant proportional to 1/k2, where q=e2πi/(k+2).


In this paper we discuss two-dimensional surface source and implant problems for a substitutional-interstitial diffusion model. We present asymptotic solutions in the limit of the surface concentration of impurity (or peak concentration of the implant) being far greater than the equilibrium vacancy concentration. Using leading order composite solutions we plot contours of constant impurity concentration. Some of these contours differ markedly from those of the corresponding linear problem, having the ‘bird’s beak’ shape which is frequently observed in experiments. We also discuss a two-dimensional surface source problem for a va­cancy model.


1999 ◽  
Vol 32 (26) ◽  
pp. 9007-9012 ◽  
Author(s):  
Jakob Heier ◽  
Easan Sivaniah ◽  
Edward J. Kramer

Soil Research ◽  
1995 ◽  
Vol 33 (5) ◽  
pp. 787 ◽  
Author(s):  
LR Basher ◽  
KM Matthews ◽  
L Zhi

Redistribution of the radionuclide tracer 137Cs was used to examine the pattern of erosion and deposition at two sites with contrasting long-term land uses (pasture and cropping) in the South Canterbury downlands, New Zealand. There were clear differences between the two land use types in variation in 137Cs concentrations and areal activity, erosion rates and topsoil depth variability. Erosion and deposition have resulted in greater variability and lower mean levels of 137Cs areal activity under cropping (46.3 mBq cm-2) than pasture (55.0 mBq cm-2). At the cropping site, erosion and deposition roughly balanced with the mean value over all sampling sites, suggesting no net soil loss, but considerable redistribution of soil within paddocks. At the pasture site results suggested slight net deposition. There was evidence for both sheet/rill and wind erosion being important in soil redistribution. While there was no difference in mean topsoil depth between pasture and cropping, there were significant differences with slope position. At the pasture site, there was little variation of topsoil depth with slope position, except for swales which tended to be deeper, whereas at the cropping site there was considerable variation in topsoil depth with slope position. Topsoil depth was a poor indicator of erosion status.


2005 ◽  
Vol 295-296 ◽  
pp. 477-482
Author(s):  
K.W. Wang ◽  
Z.J. Cai ◽  
Li Jiang Zeng

A two-dimensional surface profile imaging technique based on heterodyne interferometer is proposed. A piezo translator vibrated grating is used to generate a heterodyne signal. A high speed CCD camera is used to extract the interference signal using a five step method. The uncertainty in the displacement measurement is approximately 0.035 µm within a measurement range of 1.7 µm, confirming the two dimensional heterodyne interferometer is valid for measuring the surface profile. The method is also available for low coherence heterodyne interferometer due to the optical frequency shifts caused by the vibration of grating independent on the wavelength.


1987 ◽  
Vol 188 (3) ◽  
pp. 589-598 ◽  
Author(s):  
Gary A. Attard ◽  
David A. King

1995 ◽  
Vol 31 (7) ◽  
pp. 61-68 ◽  
Author(s):  
E. Ristenpart ◽  
R. M. Ashley ◽  
M. Uhl

Studies in Germany, Belgium, France and Scotland have revealed that there are significant solids transport gradients in the depth of foul and combined sewage flows. Continuous field observations of changes in depths of sediment deposits in combined sewers have also indicated that there is an interaction between the erosion and deposition processes and changes in the mass transport of solids in regions in the overlying flow. A fuller understanding of the interactive phenomena is essential for both sewer sediment management and the minimization of associated pollution from wash-out of solids via CSOs. The paper presents results from the detailed studies in Hildesheim, Germany and those carried out in Dundee, Scotland, investigating the heterogeneity of solids movement with regard to gross solids, erosion of sewer sediments and their interactions with the suspended transport phases and the layer of very dense fluid found to be transported under certain circumstances, near the sediment bed or sewer invert (traditionally called ‘bed-load’).


Sign in / Sign up

Export Citation Format

Share Document