forest maps
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 13)

H-INDEX

8
(FIVE YEARS 1)

Nature ◽  
2021 ◽  
Vol 593 (7857) ◽  
pp. 42-43
Author(s):  
Marion Pfeifer ◽  
Deo D. Shirima
Keyword(s):  

2021 ◽  
Vol 13 (5) ◽  
pp. 1038
Author(s):  
Elia Vangi ◽  
Giovanni D’Amico ◽  
Saverio Francini ◽  
Francesca Giannetti ◽  
Bruno Lasserre ◽  
...  

Information about forest cover and its characteristics are essential in national and international forest inventories, monitoring programs, and reporting activities. Two of the most common forest variables needed to support sustainable forest management practices are forest cover area and growing stock volume (GSV m3 ha−1). Nowadays, national forest inventories (NFI) are complemented by wall-to-wall maps of forest variables which rely on models and auxiliary data. The spatially explicit prediction of GSV is useful for small-scale estimation by aggregating individual pixel predictions in a model-assisted framework. Spatial knowledge of the area of forest land is an essential prerequisite. This information is contained in a forest mask (FM). The number of FMs is increasing exponentially thanks to the wide availability of free auxiliary data, creating doubts about which is best-suited for specific purposes such as forest area and GSV estimation. We compared five FMs available for the entire area of Italy to examine their effects on the estimation of GSV and to clarify which product is best-suited for this purpose. The FMs considered were a mosaic of local forest maps produced by the Italian regional forest authorities; the FM produced from the Copernicus Land Monitoring System; the JAXA global FM; the hybrid global FM produced by Schepaschencko et al., and the FM estimated from the Corine Land Cover 2006. We used the five FMs to mask out non-forest pixels from a national wall-to-wall GSV map constructed using inventory and remotely sensed data. The accuracies of the FMs were first evaluated against an independent dataset of 1,202,818 NFI plots using four accuracy metrics. For each of the five masked GSV maps, the pixel-level predictions for the masked GSV map were used to calculate national and regional-level model-assisted estimates. The masked GSV maps were compared with respect to the coefficient of correlation (ρ) between the estimates of GSV they produced (both in terms of mean and total of GSV predictions within the national and regional boundaries) and the official NFI estimates. At the national and regional levels, the model-assisted GSV estimates based on the GSV map masked by the FM constructed as a mosaic of local forest maps were closest to the official NFI estimates with ρ = 0.986 and ρ = 0.972, for total and mean GSV, respectively. We found a negative correlation between the accuracies of the FMs and the differences between the model-assisted GSV estimates and the NFI estimate, demonstrating that the choice of the FM plays an important role in GSV estimation when using the model-assisted estimator.


2021 ◽  
Author(s):  
Luojia Hu ◽  
Wei Yao ◽  
Zhitong Yu ◽  
Yan Huang

<p>A high resolution mangrove map (e.g., 10-m), which can identify mangrove patches with small size (< 1 ha), is a central component to quantify ecosystem functions and help government take effective steps to protect mangroves, because the increasing small mangrove patches, due to artificial destruction and plantation of new mangrove trees, are vulnerable to climate change and sea level rise, and important for estimating mangrove habitat connectivity with adjacent coastal ecosystems as well as reducing the uncertainty of carbon storage estimation. However, latest national scale mangrove forest maps mainly derived from Landsat imagery with 30-m resolution are relatively coarse to accurately characterize the distribution of mangrove forests, especially those of small size (area < 1 ha). Sentinel imagery with 10-m resolution provide the opportunity for identifying these small mangrove patches and generating high-resolution mangrove forest maps. Here, we used spectral/backscatter-temporal variability metrics (quantiles) derived from Sentinel-1 SAR (Synthetic Aperture Radar) and sentinel-2 MSI (Multispectral Instrument) time-series imagery as input features for random forest to classify mangroves in China. We found that Sentinel-2 imagery is more effective than Sentinel-1 in mangrove extraction, and a combination of SAR and MSI imagery can get a better accuracy (F1-score of 0.94) than using them separately (F1-score of 0.88 using Sentinel-1 only and 0.895 using Sentinel-2 only). The 10-m mangrove map derived by combining SAR and MSI data identified 20,003 ha mangroves in China and the areas of small mangrove patches (< 1 ha) was 1741 ha, occupying 8.7% of the whole mangrove area. The largest area (819 ha) of small mangrove patches is located in Guangdong Province, and in Fujian the percentage of small mangrove patches in total mangrove area is the highest (11.4%). A comparison with existing 30-m mangrove products showed noticeable disagreement, indicating the necessity for generating mangrove extent product with 10-m resolution. This study demonstrates the significant potential of using Sentinel-1 and Sentinel-2 images to produce an accurate and high-resolution mangrove forest map with Google Earth Engine (GEE). The mangrove forest maps are expected to provide critical information to conservation managers, scientists, and other stakeholders in monitoring the dynamics of mangrove forest.</p>


2021 ◽  
Vol 13 (4) ◽  
pp. 543
Author(s):  
Han Li ◽  
Fu Xu ◽  
Zhichao Li ◽  
Nanshan You ◽  
Hui Zhou ◽  
...  

China launched the Three-North Shelterbelt Forest Program (TNSFP) in 1978 in northern China to combat desertification and dust storms, but it is still controversial in ecologically fragile arid and semi-arid areas, which is partly due to the uncertainties of monitoring of the spatial-temporal changes of forest distribution. In this study, we aim to provide an overall retrospect of the forest changes (i.e., forest gain and forest loss) in northern China during 2007–2017, and to analyze the forest changes in different precipitation zones. We first generated annual forest maps at 30 m spatial resolution during 2007–2017 in northern China through integrating Landsat and PALSAR/PALSAR-2 data. We found the PALSAR/Landsat-based forest maps outperform other four existing products (i.e., JAXA F/NF, FROM-GLC, GlobeLand30, and NLCD-China) from either PALSAR or Landsat data, with a higher overall accuracy 96% ± 1%. The spatial-temporal analyses of forests showed a substantial forest expansion from 316,898 ± 34,537 km2 in 2007 to 384,568 ± 35,855 km2 in 2017 in the central and eastern areas. We found a higher forest loss rate (i.e., 35%) in the precipitation zones with the annual mean precipitation less than 400 mm (i.e., the arid and semi-arid areas) comparing to that (i.e., 25%) in the zones with more than 400 mm (i.e., the humid areas), which suggests the lower surviving rate in the drylands. This study provides satellite-based evidence for the forest changes in different precipitation zones, and suggests that the likely impacts of precipitation on afforestation effectiveness should be considered in future implementation of ecological restoration projects like TNSFP.


2021 ◽  
Vol 13 (3) ◽  
pp. 367
Author(s):  
Edson E. Sano ◽  
Paola Rizzoli ◽  
Christian N. Koyama ◽  
Manabu Watanabe ◽  
Marcos Adami ◽  
...  

Global-scale forest/non-forest (FNF) maps are of crucial importance for applications like biomass estimation and deforestation monitoring. Global FNF maps based on optical remote sensing data have been produced by the wall-to-wall satellite image analyses or sampling strategies. The German Aerospace Center (DLR) and the Japan Aerospace Exploration Agency (JAXA) also made available their global FNF maps based on synthetic aperture radar (SAR) data. This paper attempted to answer the following scientific question: how comparable are the FNF products derived from optical and SAR data? As test sites we selected the Amazon (tropical rainforest) and Cerrado (tropical savanna) biomes, the two largest Brazilian biomes. Forest estimations from 2015 derived from TanDEM-X (X band; HH polarization) and ALOS-2 (L band; HV polarization) SAR data, as well as forest cover information derived from Landsat 8 optical data were compared with each other at the municipality and image sampling levels. The optical-based forest estimations considered in this study were derived from the MapBiomas project, a Brazilian multi-institutional project to map land use and land cover (LULC) classes of an entire country based on historical time series of Landsat data. In addition to the existing forest maps, a set of 1619 Landsat 8 RGB color composites was used to generate new independent comparison data composed of circular areas with 5-km diameter, which were visually interpreted after image segmentation. The Spearman rank correlation estimated the correlation among the data sets and the paired Mann–Whitney–Wilcoxon tested the hypothesis that the data sets are statistically equal. Results showed that forest maps derived from SAR and optical satellites are statistically different regardless of biome or scale of study (municipality or image sampling), except for the Cerrado´s forest estimations derived from TanDEM-X and ALOS-2. Nevertheless, the percentage of pixels classified as forest or non-forest by both SAR sensors were 90% and 80% for the Amazon and Cerrado biome, respectively, indicating an overall good agreement.


2021 ◽  
Vol 13 (3) ◽  
pp. 337 ◽  
Author(s):  
Alena Dostálová ◽  
Mait Lang ◽  
Janis Ivanovs ◽  
Lars T. Waser ◽  
Wolfgang Wagner

The constellation of two Sentinel-1 satellites provides an unprecedented coverage of Synthetic Aperture Radar (SAR) data at high spatial (20 m) and temporal (2 to 6 days over Europe) resolution. The availability of dense time series enables the analysis of the SAR temporal signatures and exploitation of these signatures for classification purposes. Frequent backscatter observations allow derivation of temporally filtered time series that reinforce the effect of changes in vegetation phenology by limiting the influence of short-term changes related to environmental conditions. Recent studies have already shown the potential of multitemporal Sentinel-1 data for forest mapping, forest type classification (coniferous or broadleaved forest) as well as for derivation of phenological variables at local to national scales. In the present study, we tested the viability of a recently published multi-temporal SAR classification method for continental scale forest mapping by applying it over Europe and evaluating the derived forest type and tree cover density maps against the European-wide Copernicus High Resolution Layers (HRL) forest datasets and national-scale forest maps from twelve countries. The comparison with the Copernicus HRL datasets revealed high correspondence over the majority of the European continent with overall accuracies of 86.1% and 73.2% for the forest/non-forest and forest type maps, respectively, and a Pearson correlation coefficient of 0.83 for tree cover density map. Moreover, the evaluation of both datasets against the national forest maps showed that the obtained accuracies of Sentinel-1 forest maps are almost within range of the HRL datasets. The Sentinel-1 forest/non-forest and forest type maps obtained average overall accuracies of 88.2% and 82.7%, respectively, as compared to 90.0% and 87.2% obtained by the Copernicus HRL datasets. This result is especially promising due to the facts that these maps can be produced with a high degree of automation and that only a single year of Sentinel-1 data is required as opposed to the Copernicus HRL forest datasets that are updated every three years.


2021 ◽  
pp. 185-204
Author(s):  
Marcos de Souza Lima Figueiredo ◽  
Marcelo M. Weber ◽  
Cinthia Aguirre Brasileiro ◽  
Rui Cerqueira ◽  
Carlos E. V. Grelle ◽  
...  
Keyword(s):  

Forests ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1322
Author(s):  
Selina Ganz ◽  
Petra Adler ◽  
Gerald Kändler

Research Highlights: This study developed the first remote sensing-based forest cover map of Baden-Württemberg, Germany, in a very high level of detail. Background and Objectives: As available global or pan-European forest maps have a low level of detail and the forest definition is not considered, administrative data are often oversimplified or out of date. Consequently, there is an important need for spatio-temporally explicit forest maps. The main objective of the present study was to generate a forest cover map of Baden-Württemberg, taking the German forest definition into account. Furthermore, we compared the results to NFI data; incongruences were categorized and quantified. Materials and Methods: We used a multisensory approach involving both aerial images and Sentinel-2 data. The applied methods are almost completely automated and therefore suitable for area-wide forest mapping. Results: According to our results, approximately 37.12% of the state is covered by forest, which agrees very well with the results of the NFI report (37.26% ± 0.44%). We showed that the forest cover map could be derived by aerial images and Sentinel-2 data including various data acquisition conditions and settings. Comparisons between the forest cover map and 34,429 NFI plots resulted in a spatial agreement of 95.21% overall. We identified four reasons for incongruences: (a) edge effects at forest borders (2.08%), (b) different forest definitions since NFI does not specify minimum tree height (2.04%), (c) land cover does not match land use (0.66%) and (d) errors in the forest cover layer (0.01%). Conclusions: The introduced approach is a valuable technique for mapping forest cover in a high level of detail. The developed forest cover map is frequently updated and thus can be used for monitoring purposes and for assisting a wide range of forest science, biodiversity or climate change-related studies.


2020 ◽  
Vol 41 (16) ◽  
pp. 6071-6088
Author(s):  
Arif Oguz Altunel ◽  
Emre Akturk ◽  
Tayyibe Altunel
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document