An updated national-scale mangrove forest map in China Using Sentinel-1 and Sentinel-2 Time-Series Data with Google Earth Engine

Author(s):  
Luojia Hu ◽  
Wei Yao ◽  
Zhitong Yu ◽  
Yan Huang

<p>A high resolution mangrove map (e.g., 10-m), which can identify mangrove patches with small size (< 1 ha), is a central component to quantify ecosystem functions and help government take effective steps to protect mangroves, because the increasing small mangrove patches, due to artificial destruction and plantation of new mangrove trees, are vulnerable to climate change and sea level rise, and important for estimating mangrove habitat connectivity with adjacent coastal ecosystems as well as reducing the uncertainty of carbon storage estimation. However, latest national scale mangrove forest maps mainly derived from Landsat imagery with 30-m resolution are relatively coarse to accurately characterize the distribution of mangrove forests, especially those of small size (area < 1 ha). Sentinel imagery with 10-m resolution provide the opportunity for identifying these small mangrove patches and generating high-resolution mangrove forest maps. Here, we used spectral/backscatter-temporal variability metrics (quantiles) derived from Sentinel-1 SAR (Synthetic Aperture Radar) and sentinel-2 MSI (Multispectral Instrument) time-series imagery as input features for random forest to classify mangroves in China. We found that Sentinel-2 imagery is more effective than Sentinel-1 in mangrove extraction, and a combination of SAR and MSI imagery can get a better accuracy (F1-score of 0.94) than using them separately (F1-score of 0.88 using Sentinel-1 only and 0.895 using Sentinel-2 only). The 10-m mangrove map derived by combining SAR and MSI data identified 20,003 ha mangroves in China and the areas of small mangrove patches (< 1 ha) was 1741 ha, occupying 8.7% of the whole mangrove area. The largest area (819 ha) of small mangrove patches is located in Guangdong Province, and in Fujian the percentage of small mangrove patches in total mangrove area is the highest (11.4%). A comparison with existing 30-m mangrove products showed noticeable disagreement, indicating the necessity for generating mangrove extent product with 10-m resolution. This study demonstrates the significant potential of using Sentinel-1 and Sentinel-2 images to produce an accurate and high-resolution mangrove forest map with Google Earth Engine (GEE). The mangrove forest maps are expected to provide critical information to conservation managers, scientists, and other stakeholders in monitoring the dynamics of mangrove forest.</p>

2020 ◽  
Vol 12 (19) ◽  
pp. 3120
Author(s):  
Luojia Hu ◽  
Nan Xu ◽  
Jian Liang ◽  
Zhichao Li ◽  
Luzhen Chen ◽  
...  

A high resolution mangrove map (e.g., 10-m), including mangrove patches with small size, is urgently needed for mangrove protection and ecosystem function estimation, because more small mangrove patches have disappeared with influence of human disturbance and sea-level rise. However, recent national-scale mangrove forest maps are mainly derived from 30-m Landsat imagery, and their spatial resolution is relatively coarse to accurately characterize the extent of mangroves, especially those with small size. Now, Sentinel imagery with 10-m resolution provides an opportunity for generating high-resolution mangrove maps containing these small mangrove patches. Here, we used spectral/backscatter-temporal variability metrics (quantiles) derived from Sentinel-1 SAR (Synthetic Aperture Radar) and/or Sentinel-2 MSI (Multispectral Instrument) time-series imagery as input features of random forest to classify mangroves in China. We found that Sentinel-2 (F1-Score of 0.895) is more effective than Sentinel-1 (F1-score of 0.88) in mangrove extraction, and a combination of SAR and MSI imagery can get the best accuracy (F1-score of 0.94). The 10-m mangrove map was derived by combining SAR and MSI data, which identified 20003 ha mangroves in China, and the area of small mangrove patches (<1 ha) is 1741 ha, occupying 8.7% of the whole mangrove area. At the province level, Guangdong has the largest area (819 ha) of small mangrove patches, and in Fujian, the percentage of small mangrove patches is the highest (11.4%). A comparison with existing 30-m mangrove products showed noticeable disagreement, indicating the necessity for generating mangrove extent product with 10-m resolution. This study demonstrates the significant potential of using Sentinel-1 and Sentinel-2 images to produce an accurate and high-resolution mangrove forest map with Google Earth Engine (GEE). The mangrove forest map is expected to provide critical information to conservation managers, scientists, and other stakeholders in monitoring the dynamics of the mangrove forest.


2021 ◽  
Author(s):  
Wahaj Habib ◽  
John Connolly ◽  
Kevin McGuiness

&lt;p&gt;Peatlands are one of the most space-efficient terrestrial carbon stores. They cover approximately 3 % of the terrestrial land surface and account for about one-third of the total soil organic carbon stock. Peatlands have been under severe strain for centuries all over the world due to management related activities. In Ireland, peatlands span over approximately 14600 km&lt;sup&gt;2&lt;/sup&gt;, and 85 % of that has already been degraded to some extent. To achieve temperature goals agreed in the Paris agreement and fulfil the EU&amp;#8217;s commitment to quantifying the Carbon/Green House Gases (C/GHG) emissions from land use, land use change forestry, accurate mapping and identification of management related activities (land use) on peatlands is important.&lt;/p&gt;&lt;p&gt;High-resolution multispectral satellite imagery by European Space Agency (ESA) i.e., Sentinel-2 provides a good prospect for mapping peatland land use in Ireland. However, due to persistent cloud cover over Ireland, and the inability of optical sensors to penetrate the clouds makes the acquisition of clear sky imagery a challenge and hence hampers the analysis of the landscape. Google Earth Engine (a cloud-based planetary-scale satellite image platform) was used to create a cloud-free image mosaic from sentinel-2 data was created for raised bogs in Ireland (images collected for the time period between 2017-2020). A preliminary analysis was conducted to identify peatland land use classes, i.e., grassland/pasture, crop/tillage, built-up, cutover, cutaway and coniferous, broadleaf forests using this mosaicked image. The land-use classification results may be used as a baseline dataset since currently, no high-resolution peatland land use dataset exists for Ireland. It can also be used for quantification of land-use change on peatlands. Moreover, since Ireland will now be voluntarily accounting the GHG emissions from managed wetlands (including bogs), this data could also be useful for such type of assessment.&lt;/p&gt;


2021 ◽  
Author(s):  
Iuliia Burdun ◽  
Michel Bechtold ◽  
Viacheslav Komisarenko ◽  
Annalea Lohila ◽  
Elyn Humphreys ◽  
...  

&lt;p&gt;Fluctuations of water table depth (WTD) affect many processes in peatlands, such as vegetation development and emissions of greenhouse gases. Here, we present the OPtical TRApezoid Model (OPTRAM) as a new method for satellite-based monitoring of the temporal variation of WTD in peatlands. OPTRAM is based on the response of short-wave infrared reflectance to the vegetation water status. For five northern peatlands with long-term in-situ WTD records, and with diverse vegetation cover and hydrological regimes, we generate a suite of OPTRAM index time series using (a) different procedures to parametrise OPTRAM (peatland-specific manual vs. globally applicable automatic parametrisation in Google Earth Engine), and (b) different satellite input data (Landsat vs. Sentinel-2). The results based on the manual parametrisation of OPTRAM indicate a high correlation with in-situ WTD time-series for pixels with most suitable vegetation for OPTRAM application (mean Pearson correlation of 0.7 across sites), and we will present the performance differences when moving from a manual to an automatic procedure. Furthermore, for the overlap period of Landsat and Sentinel-2, which have different ranges and widths of short-wave infrared bands used for OPTRAM calculation, the impact of the satellite input data to OPTRAM will be analysed. Eventually, the challenge of merging different satellite missions in the derivation of OPTRAM time series will be explored as an important step towards a global application of OPTRAM for the monitoring of WTD dynamics in northern peatlands.&lt;/p&gt;


2019 ◽  
Vol 11 (24) ◽  
pp. 3023 ◽  
Author(s):  
Shuai Xie ◽  
Liangyun Liu ◽  
Xiao Zhang ◽  
Jiangning Yang ◽  
Xidong Chen ◽  
...  

The Google Earth Engine (GEE) has emerged as an essential cloud-based platform for land-cover classification as it provides massive amounts of multi-source satellite data and high-performance computation service. This paper proposed an automatic land-cover classification method using time-series Landsat data on the GEE cloud-based platform. The Moderate Resolution Imaging Spectroradiometer (MODIS) land-cover products (MCD12Q1.006) with the International Geosphere–Biosphere Program (IGBP) classification scheme were used to provide accurate training samples using the rules of pixel filtering and spectral filtering, which resulted in an overall accuracy (OA) of 99.2%. Two types of spectral–temporal features (percentile composited features and median composited monthly features) generated from all available Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) data from the year 2010 ± 1 were used as input features to a Random Forest (RF) classifier for land-cover classification. The results showed that the monthly features outperformed the percentile features, giving an average OA of 80% against 77%. In addition, the monthly features composited using the median outperformed those composited using the maximum Normalized Difference Vegetation Index (NDVI) with an average OA of 80% against 78%. Therefore, the proposed method is able to generate accurate land-cover mapping automatically based on the GEE cloud-based platform, which is promising for regional and global land-cover mapping.


2019 ◽  
Vol 11 (7) ◽  
pp. 752 ◽  
Author(s):  
Zhongchang Sun ◽  
Ru Xu ◽  
Wenjie Du ◽  
Lei Wang ◽  
Dengsheng Lu

Accurate and timely urban land mapping is fundamental to supporting large area environmental and socio-economic research. Most of the available large-area urban land products are limited to a spatial resolution of 30 m. The fusion of optical and synthetic aperture radar (SAR) data for large-area high-resolution urban land mapping has not yet been widely explored. In this study, we propose a fast and effective urban land extraction method using ascending/descending orbits of Sentinel-1A SAR data and Sentinel-2 MSI (MultiSpectral Instrument, Level 1C) optical data acquired from 1 January 2015 to 30 June 2016. Potential urban land (PUL) was identified first through logical operations on yearly mean and standard deviation composites from a time series of ascending/descending orbits of SAR data. A Yearly Normalized Difference Vegetation Index (NDVI) maximum and modified Normalized Difference Water Index (MNDWI) mean composite were generated from Sentinel-2 imagery. The slope image derived from SRTM DEM data was used to mask mountain pixels and reduce the false positives in SAR data over these regions. We applied a region-specific threshold on PUL to extract the target urban land (TUL) and a global threshold on the MNDWI mean, and slope image to extract water bodies and high-slope regions. A majority filter with a three by three window was applied on previously extracted results and the main processing was carried out on the Google Earth Engine (GEE) platform. China was chosen as the testing region to validate the accuracy and robustness of our proposed method through 224,000 validation points randomly selected from high-resolution Google Earth imagery. Additionally, a total of 735 blocks with a size of 900 × 900 m were randomly selected and used to compare our product’s accuracy with the global human settlement layer (GHSL, 2014), GlobeLand30 (2010), and Liu (2015) products. Our method demonstrated the effectiveness of using a fusion of optical and SAR data for large area urban land extraction especially in areas where optical data fail to distinguish urban land from spectrally similar objects. Results show that the average overall, producer’s and user’s accuracies are 88.03%, 94.50% and 82.22%, respectively.


2020 ◽  
Author(s):  
Luojia Hu ◽  
Wei Yao ◽  
Zhitong Yu ◽  
Lei Wang

&lt;p&gt;Mangrove forest is considered as one of the pivotal ecosystems to near-shore environment health, adjacent terrestrial ecosystems and even global climate change migration. However, for past two decades, they are declining rapidly. In order to take effective steps to prevent the extinction of mangroves, high spatial resolution information of large-scale mangrove distribution is urgent. Recent study has indicated that a suitable pixel size for extracting mangroves should be at least equal to 10 m. Hence, Sentinel imagery (Sentinel-1 C-band synthetic aperture radar (SAR) and Sentinel-2 Multi-Spectral Instrument (MSI) imagery) whose spatial resolution is 10 m may hold great potentials to achieve this goal, but there are limited researches investigating it. Therefore, in this study, we will explore the potential of Sentinel imagery to extract mangrove forests in China on the Google Earth Engine platform. Specifically, our study was mainly conducted around 3 questions: (1) Which Sentinel imagery provides a higher accuracy for mangrove forest mapping, Sentinel-1 SAR data or Sentinel-2 multi-spectral data? (2) which combination of features from Sentinel imagery provides the most accurate mangrove forest map? (3) Compared to 30-m resolution mangrove products derived from Landsat imagery, how does 10-m resolution map improve our knowledge about the distribution of mangrove forest in China?&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;Our results show that: (1) The highest producer&amp;#8217;s accuracies (the reason why using producer&amp;#8217;s accuracy as an accuracy evaluation indicator here is that the omission errors in mangrove forest extent map are much larger than commission errors) of mangrove forest maps derived from Sentinel-1 and Sentinel-2 imagery are 91.76% and 90.39%, respectively, which means that the contributions of Sentinel-1 SAR and Sentinel-2 MSI imagery to mangrove mapping are similar; (2) The highest producer&amp;#8217;s accuracy of mangrove forest map at 10-m resolution is 95.4%. The mangrove forest map with the highest accuracy is obtained by combining quantiles of spectral and backscatter bands, spectral index, and texture index derived from time series of Sentinel-1 and Sentinel-2 imagery, indicating that the combination of Sentinel-1 SAR and Sentinel-2 MSI imagery is more useful in mangrove forest mapping than using them separately; (3) In China, the total area of mangrove forest extent at 10-m resolution is similar to that at 30-m resolution (20003 ha vs. 19220 ha). However, compared to 30-m resolution mangrove products, the 10-m resolution mangrove map identifies 1741 ha (occupying 8.7% of total mangrove forest area in China) mangrove forests in size smaller than 1 ha, which are especially important to low-lying coastal zone. This study demonstrates the feasibility of Sentinel imagery in large-scale mangrove forest mapping and gives guidance to map global mangrove forest at 10-m resolution in the future. &amp;#160;&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


2021 ◽  
Vol 8 ◽  
Author(s):  
Xue Liu ◽  
Temilola E. Fatoyinbo ◽  
Nathan M. Thomas ◽  
Weihe Wendy Guan ◽  
Yanni Zhan ◽  
...  

Coastal mangrove forests provide important ecosystem goods and services, including carbon sequestration, biodiversity conservation, and hazard mitigation. However, they are being destroyed at an alarming rate by human activities. To characterize mangrove forest changes, evaluate their impacts, and support relevant protection and restoration decision making, accurate and up-to-date mangrove extent mapping at large spatial scales is essential. Available large-scale mangrove extent data products use a single machine learning method commonly with 30 m Landsat imagery, and significant inconsistencies remain among these data products. With huge amounts of satellite data involved and the heterogeneity of land surface characteristics across large geographic areas, finding the most suitable method for large-scale high-resolution mangrove mapping is a challenge. The objective of this study is to evaluate the performance of a machine learning ensemble for mangrove forest mapping at 20 m spatial resolution across West Africa using Sentinel-2 (optical) and Sentinel-1 (radar) imagery. The machine learning ensemble integrates three commonly used machine learning methods in land cover and land use mapping, including Random Forest (RF), Gradient Boosting Machine (GBM), and Neural Network (NN). The cloud-based big geospatial data processing platform Google Earth Engine (GEE) was used for pre-processing Sentinel-2 and Sentinel-1 data. Extensive validation has demonstrated that the machine learning ensemble can generate mangrove extent maps at high accuracies for all study regions in West Africa (92%–99% Producer’s Accuracy, 98%–100% User’s Accuracy, 95%–99% Overall Accuracy). This is the first-time that mangrove extent has been mapped at a 20 m spatial resolution across West Africa. The machine learning ensemble has the potential to be applied to other regions of the world and is therefore capable of producing high-resolution mangrove extent maps at global scales periodically.


Sign in / Sign up

Export Citation Format

Share Document